The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evolutionary relationship and secondary structure predictions in four transport proteins of Saccharomyces cerevisiae.

The comparison of the amino acid sequences of four yeast transport proteins indicates that there is a questionable relatedness between the uracil permease (FUR4) and the purine-cytosine permease (FCY2), whereas the arginine permease (CAN1) and the histidine permease (HIP1) clearly originated from a common molecular ancestor. The analysis of the primary structure of these transport proteins by two methods of secondary structure predictions suggests the presence of 9-12 membrane-spanning alpha-helices in each polypeptide chain. These results are concordant in that 90% of the alpha-helices were determined by both methods to be at the same positions. In the aligned sequences HIP1 and CAN1, the postulated membrane-spanning alpha-helices often start at corresponding sites, even though the overall sequence similarity of the two proteins is only 30%. In the aligned DNA coding sequences of CAN1 and HIP1, synonymous nucleotide substitutions occur with very similar frequencies in regions where the replacement substitution (changing the amino acids) frequencies are widely different. Moreover, our data suggest that the replacement substitutions can be considered as neutral in the N-terminal segment, whereas the other regions are subject to a conservative selective pressure because, if compared to a random drift, the replacement substitutions are underrepresented.[1]

References

 
WikiGenes - Universities