The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Reversible activation of hydrogenase from Escherichia coli.

Hydrogenase from Escherichia coli exhibited low activity when assayed for hydrogen:methyl viologen reductase activity and no activity when assayed for hydrogen-uptake activity with acceptors of high redox potential (dichloroindophenol, methylene blue). Nor did the enzyme as isolated catalyse proton-tritium exchange activity. Incubation under hydrogen resulted in an increase in hydrogen-uptake activity with methyl viologen and the appearance of hydrogen-uptake activity with dichloroindophenol and methylene blue. Following such treatment, the enzyme also readily catalysed isotope exchange. This process is interpreted as the conversion of the hydrogenase from an inactive 'unready' state to an 'active' state. Oxidation of active hydrogenase with dichloroindophenol caused conversion to a state resembling that of the enzyme as isolated but capable of more rapid activation under reducing conditions. This form is termed the 'ready' state. Such interconversions have been reported for hydrogenases from Desulfovibrio gigas and D. desulfuricans, and the possibility that they constitute a regulatory mechanism suggested.[1]


  1. Reversible activation of hydrogenase from Escherichia coli. Hallahan, D.L., Fernandez, V.M., Hall, D.O. Eur. J. Biochem. (1987) [Pubmed]
WikiGenes - Universities