Testing for bacterial resistance to arsenic in monitoring well water by the direct viable counting method.
Direct viable counting of metal-resistant bacteria (DVCMR) has been found to be useful in both enumerating and differentiating metal-resistant and metal-sensitive strains of bacteria. The DVCMR bioassay was used to detect effects of low and high concentrations of arsenic and arsenicals on bacterial populations in groundwater. The level of resistance of the bacterial populations to arsenate was determined by the DVCMR bioassay, and the results showed a linear correlation with the total arsenic concentrations in the monitoring well water samples; no correlation was observed by culture methods with the methods employed. Bacteria resistant to 2,000 micrograms of arsenate per ml were isolated from all monitoring well water samples studied. Strains showed similar antibiotic and heavy-metal profiles, suggesting that the arsenic was not a highly selective pressure for arsenic alone. The monitoring well water samples were amended with arsenate and nutrients to determine the biotransformation mechanisms involved. Preliminary results suggest that bacteria indigenous to the monitoring well water samples did not directly transform, i.e., precipitate or volatilize, dissolved arsenic. It was concluded that arsenic contamination of the groundwater can be monitored by the DVCMR bioassay.[1]References
- Testing for bacterial resistance to arsenic in monitoring well water by the direct viable counting method. Zelibor, J.L., Doughten, M.W., Grimes, D.J., Colwell, R.R. Appl. Environ. Microbiol. (1987) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg