The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metal-induced alterations of delta-aminolevulinic acid dehydratase.

ALAD is a cytoplasmic enzyme that catalyzes the second step of the heme biosynthesis pathway, that is, the condensation of two molecules of delta-aminolevulinic acid into porphobilinogen. ALAD is a zinc-dependent enzyme; thiol groups are essential for its activity; and in vitro experiments show that ALAD can be activated or inhibited by several metal ions including A;3+, Pb2+, Cd2+, Hg2+, Ag2+, and Cu2+. To explain these effects, it has been postulated that metals bind to thiol groups of allosteric sites and, according to their structure, provoke allosteric transitions to the active or inactive form of the enzyme. Under current environmental and occupational exposure levels, lead is practically the only metal that can affect ALAD activity. Erythrocyte ALAD is the most sensitive indicator of lead exposure: effects of exposure are detectable even when blood lead levels are within the "normal" range. Zinc protects ALAD in vitro and in vivo from the inhibitory effect of lead. There is also some suggestion that aluminum could be responsible for the decreased erythrocyte ALAD activity observed in patients on chronic hemodialysis.[1]

References

  1. Metal-induced alterations of delta-aminolevulinic acid dehydratase. Bernard, A., Lauwerys, R. Ann. N. Y. Acad. Sci. (1987) [Pubmed]
 
WikiGenes - Universities