Enhanced carboxyl methylation of membrane-associated hemoglobin in human erythrocytes.
The alpha- and beta-chains of hemoglobin (Hb) are methylated in intact erythrocytes and in cellular extracts by a protein D-aspartate methyltransferase (EC 2.1.1.77) specific for D-aspartyl and L-isoaspartyl residues. During an 18-h incubation of intact erythrocytes with L-[methyl-3H]methionine, the subfraction of Hb molecules associated with the membrane becomes progressively enriched with methyl esters, reaching a specific activity 10-fold that of cytosolic Hb. The enhanced methylation of membrane Hb in intact cells appears not to result from its methylation at sites with inherently greater stability, since salt-extracted membrane Hb 3H-methyl esters and cytosolic Hb 3H-methyl esters are hydrolyzed at similar rates at pH 8.4 in vitro. Oxidative treatment of column-purified Hb with acetylphenylhydrazine produces an immediate 4-fold increase in its specific methyl-accepting activity coincident with the production of hemichrome forms known to possess a higher affinity for membrane binding sites. Together, the results suggest that the methyltransferase preferentially recognizes partially denatured Hb molecules which possess a higher affinity for membrane binding sites, similar to Hb forms observed in senescent erythrocytes.[1]References
- Enhanced carboxyl methylation of membrane-associated hemoglobin in human erythrocytes. O'Connor, C.M., Yutzey, K.E. J. Biol. Chem. (1988) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg