The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Pyrodine     N'-phenylethanehydrazide

Synonyms: Pyrodin, Hydracetin, PubChem7620, CHEMBL30131, SureCN425872, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Pyrodin


High impact information on Pyrodin

  • High-reticulocyte control RBC and sickle trait RBC behaved exactly like normal RBC, while HbCC RBC and RBC having membranes gilded with hemoglobin iron because of prior exposure to acetylphenylhydrazine showed an abnormal peroxidation response like that of sickle RBC [6].
  • Newts (Triturus cristatus) made anemic with acetylphenylhydrazine (APH) fail to regenerate erythrocytes (RBC's) immediately and exhibit a latent period of 1.5-2 wk during which animals lack RBC's and are aplastic [7].
  • Adult betaYAC/MBD2-/- mice continue to express the gamma-globin gene at a level commensurate with 5-azacytidine treatment, 10- to 20-fold over that observed with 1-acetyl-2-phenylhydrazine treatment alone [8].
  • Moreover, exposure of intact RBC to 20 mmol/L APH induced depletion of procalpain activity for which the time course was inversely related to formation of Heinz bodies [9].
  • Oxidative treatment of column-purified Hb with acetylphenylhydrazine produces an immediate 4-fold increase in its specific methyl-accepting activity coincident with the production of hemichrome forms known to possess a higher affinity for membrane binding sites [10].

Chemical compound and disease context of Pyrodin


Biological context of Pyrodin

  • The results show a two-fold increase in resistance to oxidative stress by parasites adapted to G6PD-Mediterranean deficient host cells as compared to unadapted ones, but the parasite-red cell system remains 4 times more sensitive to APH than normal infected cells [13].
  • Repetitive injection of phenylhydrazine or acetylphenylhydrazine in rats resulted in gradually increasing levels of fluorescence despite the return in hematocrit toward normal [14].
  • When 30 mM beta-acetylphenylhydrazine (APH) was applied to HK and LK cells, lipid peroxidation and hemoglobin denaturation occurred [15].
  • In animals treated with acetylphenylhydrazine (hemolitic agent), the heart intervenes in the erythropoiesis also when hematic equilibrium is lightly altered [16].
  • During incubation with APH, osmotic fragility increased markedly in LK cells, while HK cells showed very little change [15].

Anatomical context of Pyrodin


Associations of Pyrodin with other chemical compounds


Gene context of Pyrodin


Analytical, diagnostic and therapeutic context of Pyrodin


  1. Remarkable activation of polyamine biosynthesis in hematopoiesis and hyperplasia of spleen in mice with hemolytic anemia caused by infection with Plasmodium berghei. Hibasami, H., Tsukada, T., Nishiguchi, Y., Sakurai, M., Shirakawa, S., Nakashima, K. Int. J. Parasitol. (1994) [Pubmed]
  2. Microcythemia from anemic hypoxia and normal erythropoiesis in the newt. Frangioni, G., Borgioli, G., Martini, R. J. Exp. Zool. (1987) [Pubmed]
  3. Red cell Hb oxidation of healthy subjects compared to breast cancer patients. Croci, S., Pedrazzi, G., Passeri, G., Delsignore, R., Ortalli, I. Anticancer Res. (2002) [Pubmed]
  4. Hemolysates from guinea-pig reticulocytes also efficiently translate added mRNA. Rosenberg, J.M., Sato, P.H. Comp. Biochem. Physiol., B (1988) [Pubmed]
  5. Decrease in the antioxidant capacity of red blood cells in children with celiac disease. Boda, M., Németh, I. Acta paediatrica Hungarica. (1992) [Pubmed]
  6. Detection, characterization, and bioavailability of membrane-associated iron in the intact sickle red cell. Sugihara, T., Repka, T., Hebbel, R.P. J. Clin. Invest. (1992) [Pubmed]
  7. Biochemical characterization of RNA and protein synthesis in erythrocyte development. Grasso, J.A., Chromey, N.C., Moxey, C.F. J. Cell Biol. (1977) [Pubmed]
  8. Methyl binding domain protein 2 mediates {gamma}-globin gene silencing in adult human betaYAC transgenic mice. Rupon, J.W., Wang, S.Z., Gaensler, K., Lloyd, J., Ginder, G.D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  9. Favism: impairment of proteolytic systems in red blood cells. Morelli, A., Grasso, M., Meloni, T., Forteleoni, G., Zocchi, E., De Flora, A. Blood (1987) [Pubmed]
  10. Enhanced carboxyl methylation of membrane-associated hemoglobin in human erythrocytes. O'Connor, C.M., Yutzey, K.E. J. Biol. Chem. (1988) [Pubmed]
  11. Xylitol mediated amelioration of acetylphenylhydrazine-induced hemolysis in rabbits. Ukab, W.A., Sato, J., Wang, Y.M., van Eys, J. Metab. Clin. Exp. (1981) [Pubmed]
  12. An experimental model of hemolysis-induced acute pancreatitis. Saruc, M., Yuceyar, H., Turkel, N., Ozutemiz, O., Tuzcuoglu, I., Yuce, G., Huseyinov, A. Braz. J. Med. Biol. Res. (2003) [Pubmed]
  13. The adaptation of Plasmodium falciparum to oxidative stress in G6PD deficient human erythrocytes. Roth, E., Schulman, S. Br. J. Haematol. (1988) [Pubmed]
  14. Relation of fluorescence in lipid-containing red cell membrane extracts to in vivo lipid peroxidation. Goldstein, B.D., Rozen, M.G., Amoruso, M.A. J. Lab. Clin. Med. (1979) [Pubmed]
  15. Oxidative damage to the membrane of canine erythrocytes with inherited high Na, K-ATPase activity. Ogawa, E., Kawakami, A., Yagi, T., Amaya, T., Fujise, H., Takahashi, R. J. Vet. Med. Sci. (1992) [Pubmed]
  16. The erythropoietic role of the heart in catfish (ictalurus melas). Garavini, C. Biochemistry and experimental biology. (1978) [Pubmed]
  17. Sequestrocytes: a manifestation of transcellular cross-bonding of the red cell membrane in sickle cell anemia. Weinstein, R.S., Warth, J.A., Near, K., Marikovsky, Y. J. Cell. Sci. (1989) [Pubmed]
  18. Effect of mercury, lead and acetylphenylhydrazine (APHZ) on erythrocyte and bone marrow glucose-6-phosphate dehydrogenase (E.C. an electrophoretic study. Dabrowski, Z., Miszta, H., Marszatek, K. Folia Haematol. Int. Mag. Klin. Morphol. Blutforsch. (1980) [Pubmed]
  19. Electron microscopic study of erythroblastic islands obtained by 'tissue-stamp culture' method. Fujii, Y., Terada, N., Ueda, H., Kitano, K., Ohno, S. Journal of electron microscopy. (1997) [Pubmed]
  20. Effects of acetylphenylhydrazine (APHZ) on the stromal cells of the bone marrow in rats (in vitro). Miszta, H. Folia Histochem. Cytobiol. (1987) [Pubmed]
  21. Familial deficiency of glutathione reductase in human blood cells. Loos, H., Roos, D., Weening, R., Houwerzijl, J. Blood (1976) [Pubmed]
  22. Metabolic dependence of protein arrangement in human erythrocyte membranes. I. Analysis of spectrin-rich complexes in ATP-depleted red cells. Palek, J., Liu, S.C., Snyder, L.M. Blood (1978) [Pubmed]
  23. Protection by ascorbate against acetylphenylhydrazine-induced Heinz body formation in glucose-6-phosphate dehydrogenase deficient erythrocytes. Winterbourn, C.C. Br. J. Haematol. (1979) [Pubmed]
  24. Tolerability of ibuprofen and flurbiprofen in G-6-PD deficient subjects: in vitro study. Sheth, U.K., Valame, S.P., Gupta, K.C., Baxi, A.J., Kulkarni, V.N., Pispati, P.K. British journal of clinical pharmacology. (1981) [Pubmed]
  25. The haemolytic reactions of 1-acetyl-2-phenylhydrazine and hydrazine: a spin trapping study. Thornalley, P.J. Chem. Biol. Interact. (1984) [Pubmed]
  26. Equine glucose-6-phosphate dehydrogenase deficiency. Stockham, S.L., Harvey, J.W., Kinden, D.A. Vet. Pathol. (1994) [Pubmed]
  27. The single erythrocyte rigidometer (SER) as a reference for RBC deformability. Kiesewetter, H., Dauer, U., Teitel, P., Schmid-Schönbein, H., Trapp, R. Biorheology. (1982) [Pubmed]
  28. Differences in the reaction sequences associated with drug-induced oxidation of hemoglobins E, S, A, and F. Macdonald, V.W., Charache, S. J. Lab. Clin. Med. (1983) [Pubmed]
  29. Properties of chicken erythrocyte delta-aminolevulinate synthase. Ades, I.Z., Friedland, D.M. Int. J. Biochem. (1988) [Pubmed]
  30. Rheological properties of red cells in haemoglobin Köln disease. Tillmann, W., Labitzke, N., Schröter, W. Br. J. Haematol. (1976) [Pubmed]
  31. Hemoglobin oxidative stress in cancer. Della Rovere, F., Granata, A., Broccio, M., Zirilli, A., Broccio, G. Anticancer Res. (1995) [Pubmed]
  32. Sites and trend of erythropoiesis in anemic, normal, and splenectomized newts. Frangioni, G., Borgioli, G. J. Exp. Zool. (1988) [Pubmed]
  33. Erythroid accelerating factor detected in serum from rats with drug induced hemolysis. Kasai, M., Yokoyama, M., Toki, T., Maruyama, H., Satoh, K., Itoh, E. Tohoku J. Exp. Med. (1998) [Pubmed]
  34. Acetylphenylhydrazine induced haemoglobin oxidation in erythrocytes studied by Mössbauer spectroscopy. Croci, S., Pedrazzi, G., Passeri, G., Piccolo, P., Ortalli, I. Biochim. Biophys. Acta (2001) [Pubmed]
WikiGenes - Universities