The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Reversible alterations of cerebral gamma-aminobutyric acid in pyrithiamine-treated rats: implications for the pathogenesis of Wernicke's encephalopathy.

Treatment of rats with the central thiamine antagonist, pyrithiamine, results in severe neurological symptoms such as loss of righting reflex. Measurement of gamma-aminobutyric acid (GABA) content of brain tissue from symptomatic pyrithiamine-treated (PT) rats revealed significant reductions in thalamus, cerebellum, and pons. GABA content of cerebral cortex, however, was unaltered. Activities of the thiamine-dependent enzyme alpha-ketoglutarate dehydrogenase (alpha KGDH) were reduced in parallel with the GABA changes. On the other hand, activities of the GABA-synthetic enzyme glutamic acid decarboxylase (GAD) remained within normal limits, with the exception of a small but significant decrease in thalamus of symptomatic PT rats. Affinities and densities of high-affinity [3H]muscimol binding sites on crude cerebral membrane preparations from symptomatic PT rats were unchanged. Thiamine administration to symptomatic animals resulted in correction of abnormal righting reflexes and in normalization of decreased GABA levels and reduced alpha KGDH activities in cerebellum and pons. Thalamic GABA levels and alpha KGDH activities, on the other hand, remained significantly lower than normal. These results suggest that the reversible symptoms of pyrithiamine treatment may result from imparied GABA synthesis in cerebellum and pons of these animals. Similar mechanisms may play a role in the pathogenesis of the reversible symptoms of Wernicke's encephalopathy in man.[1]

References

 
WikiGenes - Universities