The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effects of glycyl-L-glutamine in vitro on the molecular forms of acetylcholinesterase in the preganglionically denervated superior cervical ganglion of the cat.

Normal and preganglionically denervated cat superior cervical ganglia were sectioned and cultured for 24 or 48 hr, with or without preliminary inactivation of acetylcholinesterase, and in the presence or absence of 10(-5) M glycyl-L-glutamine. They were then homogenized, and the molecular forms of acetylcholinesterase were analyzed by sucrose gradient sedimentation. We observed an increased proportion of the globular monomeric G1 form, and to a lesser extent of the dimeric G2 and tetrameric membranous G4 forms, of acetylcholinesterase in the glycyl-L-glutamine-treated compared with the control cultures. There was only a small increase in the total acetylcholinesterase activity and no significant variation in the activity of the metabolic enzyme lactate dehydrogenase. It therefore seems likely that glycyl-L-glutamine, or the endogenous neurotrophic factor, maintains acetylcholinesterase in the preganglionically denervated ganglia in vivo by specifically increasing the biosynthesis of the monomeric G1 form, but not that of other proteins; these trophic factors do not seem to promote the polymerization of G1 into the more complex G2 and G4 forms.[1]


WikiGenes - Universities