The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Activation of ribosomal protein S6 phosphorylation during meiotic maturation of Xenopus laevis oocytes: in vitro ordered appearance of S6 phosphopeptides.

During meiotic maturation of Xenopus laevis stage 6 oocytes into unfertilized eggs, 40S ribosomal protein S6 undergoes multiple phosphorylation. Extracts prepared from unfertilized eggs are up to 10-fold more efficient in phosphorylating S6 than those prepared from immature oocytes. When analyzed by DEAE chromatography the S6 kinase activity elutes as a single peak. If extracts from unfertilized eggs are prepared in the absence of beta-glycerol phosphate, a putative phosphatase inhibitor, there is a severe reduction in recovered S6 kinase activity. Under optimal conditions, incubation of unfertilized egg extracts with 40S ribosomes in the presence of ATP leads to the average incorporation of 3.5 mol of phosphate/mol of S6. Prior incubation of these extracts with the cAMP-dependent protein kinase inhibitor does not inhibit S6 phosphorylation indicating that another kinase is responsible. Analysis of the in vitro phosphorylated peptides demonstrates that they migrate to the equivalent position of those observed previously in vivo and in vitro. More strikingly, if each of the increasingly phosphorylated derivatives of S6 is analyzed independently, it is found that the phosphopeptides appear in a specific order.[1]

References

 
WikiGenes - Universities