The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Studies on the structure and mechanism of Streptococcus faecium L-alpha-glycerophosphate oxidase.

An FAD-containing L-alpha-glycerophosphate oxidase has been purified to homogeneity from Streptococcus faecium. The purified protein exists as a dimer (subunit Mr = 65,000); each subunit contains 1 mol of FAD. The enzyme contains no iron, as determined by atomic absorption spectroscopy. The alpha-glycerophosphate oxidase reacts reversibly with sulfite to form a covalent N(5) adduct; it preferentially binds the anionic form of the native oxidized FAD, and it also stabilizes the p-quinonoid form of 8-mercapto-FAD. The enzyme shows an unusually high reactivity with ferricyanide in the absence of oxygen; however, there is no evidence for any superoxide ion (O2-.) generation under standard assay conditions. Dithionite titrations of the enzyme reveal an unusual pH dependence for the stabilization of the flavin semiquinone; only at pH 8.5 does significant anionic semiquinone accumulate. L-alpha-Glycerophosphate rapidly reduces the enzyme-bound FAD; in addition, a small amount of catalytically insignificant red semiquinone appears under these conditions. The 5-deaza-FAD-reconstituted enzyme is also reduced by substrate, strongly suggesting that a radical mechanism is not involved in the oxidation of alpha-glycerophosphate. Furthermore, nitroethane anion reduces the native enzyme; this observation suggests that an electron transfer mechanism involving a substrate carbanion is possible with this enzyme.[1]

References

 
WikiGenes - Universities