The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

sn-Gro-1-P     2,3-dihydroxypropoxyphosphonic acid

Synonyms: AGN-PC-0D1HXO, CHEMBL358320, NSC-9231, CHEBI:14336, CHEBI:15943, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of glyceryloxyphosphonic acid


Psychiatry related information on glyceryloxyphosphonic acid

  • 1. A histochemical study using myosin ATPase, succinate dehydrogenase and alpha-glycerophosphate dehydrogenase reactions and a morphometric analysis with image analyser, was carried out in sartorius and gastrocnemius muscles of two anuran species, Rana perezi and Bufo calamita, that show different locomotor activities [6].

High impact information on glyceryloxyphosphonic acid


Chemical compound and disease context of glyceryloxyphosphonic acid


Biological context of glyceryloxyphosphonic acid


Anatomical context of glyceryloxyphosphonic acid


Associations of glyceryloxyphosphonic acid with other chemical compounds

  • However, changes in adipsin, glycerophosphate dehydrogenase, and actin mRNAs, whose levels are also differentiation dependent, can be accounted for in part by changes in the number of polymerase complexes on their respective genes [26].
  • The diabetes-induced alteration of 2-ketoglutarate dehydrogenase in islet mitochondria was less marked, however, than that of the FAD-linked glycerophosphate dehydrogenase and was not associated with any change in responsiveness to Ca2+ [27].
  • Comparison of these two particular fuels allows the effect of redox state on insulin secretion to be evaluated since the phosphorylated products dihydroxyacetone phosphate and glycerol phosphate lie on opposite sides of the NADH-consuming glycerophosphate dehydrogenase reaction [28].
  • Relative to PEPC1, PEPC2 demonstrated significantly enhanced thermal stability and a much lower sensitivity to allosteric activators (Glc-6-P, Glc-1-P, Fru-6-P, glycerol-3-P) and inhibitors (Asp, Glu, malate) and pH changes within the physiological range [29].
  • The alpha-glycerophosphate shuttle was reconstituted with mitochondria isolated from rats treated with L-thyroxine [30].

Gene context of glyceryloxyphosphonic acid


Analytical, diagnostic and therapeutic context of glyceryloxyphosphonic acid


  1. Effects of glucose, insulin and potassium infusion on tissue metabolic changes within first hour of myocardial infarction in the baboon. Opie, L.H., Bruyneel, K., Owen, P. Circulation (1975) [Pubmed]
  2. Factors affecting the acyl selectivities of acyltransferases in Escherichia coli. Okuyama, H., Yamada, K., Ikezawa, H., Wakil, S.J. J. Biol. Chem. (1976) [Pubmed]
  3. The soluble alpha-glycerophosphate oxidase from Enterococcus casseliflavus. Sequence homology with the membrane-associated dehydrogenase and kinetic analysis of the recombinant enzyme. Parsonage, D., Luba, J., Mallett, T.C., Claiborne, A. J. Biol. Chem. (1998) [Pubmed]
  4. Deficient activity of FAD-linked glycerophosphate dehydrogenase in islets of GK rats. Ostenson, C.G., Abdel-Halim, S.M., Rasschaert, J., Malaisse-Lagae, F., Meuris, S., Sener, A., Efendic, S., Malaisse, W.J. Diabetologia (1993) [Pubmed]
  5. Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Darbon, E., Servant, P., Poncet, S., Deutscher, J. Mol. Microbiol. (2002) [Pubmed]
  6. Histochemical determination of muscle fiber types in locomotor muscles of anuran amphibians. Mendiola, P., De Costa, J., Lozano, M.T., Agulleiro, B. Comparative biochemistry and physiology. A, Comparative physiology. (1991) [Pubmed]
  7. Deficiency of enzymes catalyzing the biosynthesis of glycerol-ether lipids in Zellweger syndrome. A new category of metabolic disease involving the absence of peroxisomes. Datta, N.S., Wilson, G.N., Hajra, A.K. N. Engl. J. Med. (1984) [Pubmed]
  8. Cyclic AMP-mediated control of lipogenic enzyme synthesis during adipose differentiation of 3T3 cells. Spiegelman, B.M., Green, H. Cell (1981) [Pubmed]
  9. Differences in insulin action as a function of original anatomical site of newly differentiated adipocytes obtained in primary culture. Sztalryd, C., Azhar, S., Reaven, G.M. J. Clin. Invest. (1991) [Pubmed]
  10. Response of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme to constant infusions of L-triiodothyronine in rats bearing the Walker 256 carcinoma. Evidence for divergent postreceptor regulation of the thyroid hormone response. Tibaldi, J.M., Sahnoun, N., Surks, M.I. J. Clin. Invest. (1984) [Pubmed]
  11. Biochemical studies on mitochondria isolated from Normal and Neoplastic Tissues of the Mouse Mammary Gland. White, M.T., Nandi, S. J. Natl. Cancer Inst. (1976) [Pubmed]
  12. The effect of thyroid hormone on mitochondrial biogenesis and cellular hyperplasia. Wooten, W.L., Cascarano, J. J. Bioenerg. Biomembr. (1980) [Pubmed]
  13. D-Alanylcardiolipin, a major component of the unique lipid pattern of Vagococcus fluvialis. Fischer, W., Arneth-Seifert, D. J. Bacteriol. (1998) [Pubmed]
  14. Antiterminator protein GlpP of Bacillus subtilis binds to glpD leader mRNA. Glatz, E., Persson, M., Rutberg, B. Microbiology (Reading, Engl.) (1998) [Pubmed]
  15. Impaired FAD-glycerophosphate dehydrogenase activity in islet and liver homogenates of fa/fa rats. Rasschaert, J., Malaisse-Lagae, F., Sener, A., Leclercq-Meyer, V., Herberg, L., Malaisse, W.J. Mol. Cell. Biochem. (1994) [Pubmed]
  16. Sites of inhibition of mitochondrial electron transport in macrophage-injured neoplastic cells. Granger, D.L., Lehninger, A.L. J. Cell Biol. (1982) [Pubmed]
  17. Mitochondrial activation directly triggers the exocytosis of insulin in permeabilized pancreatic beta-cells. Maechler, P., Kennedy, E.D., Pozzan, T., Wollheim, C.B. EMBO J. (1997) [Pubmed]
  18. Glycerophospholipid synthesis: improved general method and new analogs containing photoactivable groups. Gupta, C.M., Radhakrishnan, R., Khorana, H.G. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  19. Limitations of the mass isotopomer distribution analysis of glucose to study gluconeogenesis. Substrate cycling between glycerol and triose phosphates in liver. Previs, S.F., Fernandez, C.A., Yang, D., Soloviev, M.V., David, F., Brunengraber, H. J. Biol. Chem. (1995) [Pubmed]
  20. Role of dehydrogenase competition in metabloic regulation. The case of lactate and alpha-glycerophosphate dehydrogenases. Guppy, M., Hochachka, P.W. J. Biol. Chem. (1978) [Pubmed]
  21. Stimulation of hepatic mitochondrial alpha-glycerophosphate dehydrogenase and malic enzyme by L-triiodothyronine. Characteristics of the response with specific nuclear thyroid hormone binding sites fully saturated. Oppenheimer, J.H., Silva, E., Schwartz, H.L., Surks, M.I. J. Clin. Invest. (1977) [Pubmed]
  22. Biochemistry of protozoan microbodies: peroxisomes, alpha-glycerophosphate oxidase bodies, hydrogenosomes. Müller, M. Annu. Rev. Microbiol. (1975) [Pubmed]
  23. A mutation in the peroxisome proliferator-activated receptor gamma-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice. Olswang, Y., Cohen, H., Papo, O., Cassuto, H., Croniger, C.M., Hakimi, P., Tilghman, S.M., Hanson, R.W., Reshef, L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  24. A study of the adipose conversion of suspended 3T3 cells by using glycerophosphate dehydrogenase as differentiation marker. Pairault, J., Green, H. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  25. Studies on some lipogenic enzymes of cultured myeloid leukemic cells. Okuma, M., Ichikawa, Y., Yamashita, S., Kitajima, K., Numa, S. Blood (1976) [Pubmed]
  26. Transcriptional regulation of acetyl coenzyme A carboxylase gene expression by tumor necrosis factor in 30A-5 preadipocytes. Pape, M.E., Kim, K.H. Mol. Cell. Biol. (1989) [Pubmed]
  27. Impairment of glycerol phosphate shuttle in islets from rats with diabetes induced by neonatal streptozocin. Giroix, M.H., Rasschaert, J., Bailbe, D., Leclercq-Meyer, V., Sener, A., Portha, B., Malaisse, W.J. Diabetes (1991) [Pubmed]
  28. Mitochondrial metabolism sets the maximal limit of fuel-stimulated insulin secretion in a model pancreatic beta cell: a survey of four fuel secretagogues. Antinozzi, P.A., Ishihara, H., Newgard, C.B., Wollheim, C.B. J. Biol. Chem. (2002) [Pubmed]
  29. Structural and kinetic properties of high and low molecular mass phosphoenolpyruvate carboxylase isoforms from the endosperm of developing castor oilseeds. Blonde, J.D., Plaxton, W.C. J. Biol. Chem. (2003) [Pubmed]
  30. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng, L., Bremer, J., Davis, E.J. J. Biol. Chem. (1976) [Pubmed]
  31. Role of hexosamine biosynthesis in glucose-mediated up-regulation of lipogenic enzyme mRNA levels: effects of glucose, glutamine, and glucosamine on glycerophosphate dehydrogenase, fatty acid synthase, and acetyl-CoA carboxylase mRNA levels. Rumberger, J.M., Wu, T., Hering, M.A., Marshall, S. J. Biol. Chem. (2003) [Pubmed]
  32. Regulation of ob gene mRNA levels in cultured adipocytes. Rentsch, J., Chiesi, M. FEBS Lett. (1996) [Pubmed]
  33. Membrane-bound phosphatases in Escherichia coli: sequence of the pgpA gene. Icho, T. J. Bacteriol. (1988) [Pubmed]
  34. Cloning of the glycerol kinase gene of Bacillus subtilis. Holmberg, C., Rutberg, B. FEMS Microbiol. Lett. (1989) [Pubmed]
  35. Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: cloning and expression of two glycerol kinase genes. Alvarez, M.d.e. .F., Medina, R., Pasteris, S.E., Strasser de Saad, A.M., Sesma, F. J. Mol. Microbiol. Biotechnol. (2004) [Pubmed]
  36. Subcellular incorporation of 32P into phosphoinositides and other phospholipids in isolated hepatocytes. Seyfred, M.A., Wells, W.W. J. Biol. Chem. (1984) [Pubmed]
  37. Molecular cloning of mRNA from 3T3 adipocytes. Regulation of mRNA content for glycerophosphate dehydrogenase and other differentiation-dependent proteins during adipocyte development. Spiegelman, B.M., Frank, M., Green, H. J. Biol. Chem. (1983) [Pubmed]
  38. Isolation and characterization of flavin-linked glycerol-3-phosphate dehydrogenase from rabbit skeletal muscle mitochondria and comparison with the enzyme from rabbit brain. Cole, E.S., Lepp, C.A., Holohan, P.D., Fondy, T.P. J. Biol. Chem. (1978) [Pubmed]
  39. Formation of 1,3-cyclic glycerophosphate by the action of phospholipase C on phosphatidylglycerol. Shinitzky, M., Friedman, P., Haimovitz, R. J. Biol. Chem. (1993) [Pubmed]
WikiGenes - Universities