The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1L3XDS     formonitrile; iron(+3) cation; tricyanide

Synonyms: AR-1J2529, formonitrile; iron(3+); tricyanide, iron(3+) cyanide- hydrocyanic acid(1:3:3)
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of hexacyanoferrate III

 

High impact information on hexacyanoferrate III

  • Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues [6].
  • Because neither of these anions can enter the cell, reducing equivalents generated in the course of glycolysis must in some manner be transferred across the cell membrane, thereby resulting in ferricyanide reduction [7].
  • However, the Golgi enzyme was unstable inasmuch as pelleting and resuspending the fresh fractions resulted in a considerable inactivation (40--60%), which was further increased with subsequent storage at 4 degrees C. A similar inactivation was observed using cytochrome b5 but not ferricyanide as electron acceptor [8].
  • Measures of flavin and heme reduction kinetics, ferricyanide and cytochrome c reduction, and NO synthesis established that the aromatic side chain of F1395 is required to repress electron transfer into and out of the flavins of neuronal NOS in the calmodulin-free state, and is also required for calmodulin to fully relieve this repression [9].
  • Reduction of external ferricyanide and diferric transferrin by HeLa cells is accompanied by proton release from the cells [10].
 

Chemical compound and disease context of hexacyanoferrate III

 

Biological context of hexacyanoferrate III

 

Anatomical context of hexacyanoferrate III

 

Associations of hexacyanoferrate III with other chemical compounds

 

Gene context of hexacyanoferrate III

  • One-electron acceptors, such as potassium ferricyanide, cannot be reduced by NQO2 [30].
  • Here we demonstrate that the redox capability of porin 1 is specific for ferricyanide as this same enzyme cannot reduce DCIP or cytochrome c in vitro [31].
  • Pretreatment of cells with ferricyanide enhanced the H2O2-induced expression of katG gene encoding for catalase HPI; this gene is a member of the gene family controlled by the oxyR gene [32].
  • Pretreatment with ferricyanide inhibited H2O2-induced expression of the sfiA gene which is the member of the gene family controlled by the recA and lexA genes [32].
  • We demonstrate the capacity of recombinant Arh1p, made in Escherichia coli, to substitute for its mammalian homologue in ferricyanide, cytochrome c reduction, and, more importantly, in vitro 11beta-hydroxylase assays [33].
 

Analytical, diagnostic and therapeutic context of hexacyanoferrate III

  • After treatment with ferricyanide, the resonance Raman spectrum closely resembles that of the [3Fe-3S] protein, ferredoxin II from D. gigas; the 34S shifts aid in assignments of the [3Fe-3S] modes [34].
  • As a preliminary step to the analysis of the resulting solution, carbonylhemoglobin solutions partially oxidized with ferricyanide were studied by isoelectric focusing at -25 degrees C under identical conditions [35].
  • Depending on the concentration of ferricyanide we observe a 10-100 times increase of the biosensor response in concentrated buffer solutions and a substantial extension of its dynamic range [36].
  • The PSII core complexes dark-adapted at different pHs in the presence of ferricyanide as an electron acceptor were excited by four consecutive saturating laser flashes, and FTIR difference spectra induced by each flash were recorded in the region of 1800-1200 cm(-1) [37].
  • METHODS: We used reversed-phase HPLC with postcolumn derivatization with alkaline potassium ferricyanide and fluorescence detection [38].

References

  1. Spectroscopic studies of ferricyanide oxidation of Azotobacter vinelandii ferredoxin I. Morgan, T.V., Stephens, P.J., Devlin, F., Stout, C.D., Melis, K.A., Burgess, B.K. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  2. Oxidation of methylhydrazines to mutagenic methylating derivatives and inducers of the adaptive response of Escherichia coli to alkylation damage. Sedgwick, B. Cancer Res. (1992) [Pubmed]
  3. Nitric oxide donors protect cultured rat astrocytes from 1-methyl-4-phenylpyridinium-induced toxicity. Tsai, M.J., Lee, E.H. Free Radic. Biol. Med. (1998) [Pubmed]
  4. The oxidation of Pseudomonas cytochrome c-551 oxidase by potassium ferricyanide. Barber, D., Parr, S.R., Greenwood, C. Biochem. J. (1978) [Pubmed]
  5. Rapid antibiotic susceptibility testing via electrochemical measurement of ferricyanide reduction by Escherichia coli and Clostridium sporogenes. Ertl, P., Robello, E., Battaglini, F., Mikkelsen, S.R. Anal. Chem. (2000) [Pubmed]
  6. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I. Moreadith, R.W., Cleeter, M.W., Ragan, C.I., Batshaw, M.L., Lehninger, A.L. J. Clin. Invest. (1987) [Pubmed]
  7. An ascorbate-mediated transmembrane-reducing system of the human erythrocyte. Orringer, E.P., Roer, M.E. J. Clin. Invest. (1979) [Pubmed]
  8. Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein, in rat liver cells. I. Distribution of the enzyme activity in microsomes, mitochondria, and golgi complex. Borgese, N., Meldolesi, J. J. Cell Biol. (1980) [Pubmed]
  9. A conserved flavin-shielding residue regulates NO synthase electron transfer and nicotinamide coenzyme specificity. Adak, S., Sharma, M., Meade, A.L., Stuehr, D.J. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  10. Requirement for coenzyme Q in plasma membrane electron transport. Sun, I.L., Sun, E.E., Crane, F.L., Morré, D.J., Lindgren, A., Löw, H. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  11. The effect of cyanide and ferricyanide on the activity of the dissimilatory nitrate reductase of Escherichia coli. Adams, M.W., Mortenson, L.E. J. Biol. Chem. (1982) [Pubmed]
  12. Oxidation-reduction properties of Chromatium vinosum high potential iron-sulfur protein. Mizrahi, I.A., Wood, F.E., Cusanovich, M.A. Biochemistry (1976) [Pubmed]
  13. Oxygen uptake associated with Sendai-virus-stimulated chemiluminescence in rat thymocytes contains a significant non-mitochondrial component. Kolbuch-Braddon, M.E., Peterhans, E., Stocker, R., Weidemann, M.J. Biochem. J. (1984) [Pubmed]
  14. Ferricyanide reduction by Escherichia coli: kinetics, mechanism, and application to the optimization of recombinant fermentations. Ertl, P., Unterladstaetter, B., Bayer, K., Mikkelsen, S.R. Anal. Chem. (2000) [Pubmed]
  15. The effect of glucagon on hepatic respiratory capacity. LaNoue, K.F., Strzelecki, T., Finch, F. J. Biol. Chem. (1984) [Pubmed]
  16. Mechanisms of inactivation of molybdoenzymes by cyanide. Coughlan, M.P., Johnson, J.L., Rajagopalan, K.V. J. Biol. Chem. (1980) [Pubmed]
  17. Electron transfer across the chromaffin granule membrane. Njus, D., Knoth, J., Cook, C., Kelly, P.M. J. Biol. Chem. (1983) [Pubmed]
  18. Interaction of ascorbate and alpha-tocopherol in resealed human erythrocyte ghosts. Transmembrane electron transfer and protection from lipid peroxidation. May, J.M., Qu, Z.C., Morrow, J.D. J. Biol. Chem. (1996) [Pubmed]
  19. Transmembrane redox in control of cell growth. Stimulation of HeLa cell growth by ferricyanide and insulin. Sun, I.L., Crane, F.L., Grebing, C., Löw, H. Exp. Cell Res. (1985) [Pubmed]
  20. Enzyme activities in endothelial cells and smooth muscle cells from swine aorta. Hayes, L.W., Goguen, C.A., Stevens, A.L., Magargal, W.W., Slakey, L.L. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  21. Erythrocytes are the major intravascular storage sites of nitrite in human blood. Dejam, A., Hunter, C.J., Pelletier, M.M., Hsu, L.L., Machado, R.F., Shiva, S., Power, G.G., Kelm, M., Gladwin, M.T., Schechter, A.N. Blood (2005) [Pubmed]
  22. Properties of NADH-cytochrome-b5 reductase from human neutrophils. Badwey, J.A., Tauber, A.I., Karnovsky, M.L. Blood (1983) [Pubmed]
  23. Consequences of removal of a molybdenum ligand (DmsA-Ser-176) of Escherichia coli dimethyl sulfoxide reductase. Trieber, C.A., Rothery, R.A., Weiner, J.H. J. Biol. Chem. (1996) [Pubmed]
  24. Identification of the pheophytin-QA-Fe domain of the reducing side of the photosystem II as the Cu(II)-inhibitory binding site. Yruela, I., Montoya, G., Alonso, P.J., Picorel, R. J. Biol. Chem. (1991) [Pubmed]
  25. Purification and characterization of the human neutrophil NADH-cytochrome b5 reductase. Tauber, A.I., Wright, J., Higson, F.K., Edelman, S.A., Waxman, D.J. Blood (1985) [Pubmed]
  26. A kinetic analysis of electron transport across chromaffin vesicle membranes. Kelley, P.M., Njus, D. J. Biol. Chem. (1988) [Pubmed]
  27. Human erythrocyte recycling of ascorbic acid: relative contributions from the ascorbate free radical and dehydroascorbic acid. May, J.M., Qu, Z.C., Cobb, C.E. J. Biol. Chem. (2004) [Pubmed]
  28. On the location of the H+-extruding steps in site 2 of the mitochondrial electron transport chain. Alexandre, A., Galiazzo, F., Lehninger, A.L. J. Biol. Chem. (1980) [Pubmed]
  29. Topological studies of the steroid hydroxylase complexes in bovine adrenocortical mitochondria. Churchill, P.F., deAlvare, L.R., Kimura, T. J. Biol. Chem. (1978) [Pubmed]
  30. Catalytic properties of NAD(P)H:quinone oxidoreductase-2 (NQO2), a dihydronicotinamide riboside dependent oxidoreductase. Wu, K., Knox, R., Sun, X.Z., Joseph, P., Jaiswal, A.K., Zhang, D., Deng, P.S., Chen, S. Arch. Biochem. Biophys. (1997) [Pubmed]
  31. Characterization of VDAC1 as a plasma membrane NADH-oxidoreductase. Baker, M.A., Ly, J.D., Lawen, A. Biofactors (2004) [Pubmed]
  32. Effects of penetrating and non-penetrating oxidants on Escherichia coli. Smirnova, G.V., Muzyka, N.G., Glukhovchenko, M.N., Oktyabrsky, O.N. Biochemistry Mosc. (1997) [Pubmed]
  33. Characterization of recombinant adrenodoxin reductase homologue (Arh1p) from yeast. Implication in in vitro cytochrome p45011beta monooxygenase system. Lacour, T., Achstetter, T., Dumas, B. J. Biol. Chem. (1998) [Pubmed]
  34. Resonance Raman and electron paramagnetic resonance studies on oxidized and ferricyanide-treated Clostridium pasteurianum ferredoxin. Vibrational assignments from 34S shifts and evidence for conversion of 4 to 3 iron-sulfur clusters via oxidative damage. Vibrational assignments from 34S shifts and evidence for conversion of 4 to 3 iron-sulfur clusters via oxidative damage. Johnson, M.K., Spiro, T.G., Mortenson, L.E. J. Biol. Chem. (1982) [Pubmed]
  35. Isolation of intermediate compounds between hemoglobin and carbon monoxide. Perrella, M., Benazzi, L., Cremonesi, L., Vesely, S., Viggiano, G., Rossi-Bernardi, L. J. Biol. Chem. (1983) [Pubmed]
  36. Glucose-sensitive enzyme field effect transistor using potassium ferricyanide as an oxidizing substrate. Shul'ga, A.A., Koudelka-Hep, M., de Rooij, N.F., Netchiporouk, L.I. Anal. Chem. (1994) [Pubmed]
  37. pH dependence of the flash-induced S-state transitions in the oxygen-evolving center of photosystem II from Thermosynechoccocus elongatus as revealed by Fourier transform infrared spectroscopy. Suzuki, H., Sugiura, M., Noguchi, T. Biochemistry (2005) [Pubmed]
  38. Vitamin B(1) status assessed by direct measurement of thiamin pyrophosphate in erythrocytes or whole blood by HPLC: comparison with erythrocyte transketolase activation assay. Talwar, D., Davidson, H., Cooney, J., St JO'Reilly, D. Clin. Chem. (2000) [Pubmed]
 
WikiGenes - Universities