The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

In vivo levels of diadenosine tetraphosphate and adenosine tetraphospho-guanosine in Physarum polycephalum during the cell cycle and oxidative stress.

Cellular levels of diadenosine tetraphosphate (Ap4A) and adenosine tetraphospho-guanosine (Ap4G) were specifically measured during the cell cycle of Physarum polycephalum by a high-pressure liquid chromatographic method. Ap4A was also measured indirectly by a coupled phosphodiesterase-luciferase assay. No cell cycle-specific changes in either Ap4A or Ap4G were detected in experiments involving different methods of assay, different strains of P. polycephalum, or different methods of fixation of macroplasmodia. Our results on Ap4A are in contrast with those reported previously (C. Weinmann-Dorsch, G. Pierron, R. Wick, H. Sauer, and F. Grummt, Exp. Cell Res. 155:171-177, 1984). Weinmann-Dorsch et al. reported an 8- to 30-fold increase in Ap4A in early S phase in P. polycephalum, as measured by the phosphodiesterase-luciferase assay. We also measured levels of Ap4A, Ap4G, and ATP in macroplasmodia treated with 0.1 mM dinitrophenol. Ap4A and Ap4G transiently increased three- to sevenfold after 1 h and then decreased concomitantly with an 80% decrease in the level of ATP after 2 h in the presence of dinitrophenol. These results do not support the hypothesis that Ap4A is a positive pleiotypic activator that modulates DNA replication, but they are consistent with the hypothesis proposed for procaryotes that Ap4A and Ap4G are signal nucleotides or alarmones of oxidative stress (B.R. Bochner, P.C. Lee, S.W. Wilson, C.W. Cutler, and B.N. Ames, Cell 37:225-232, 1984).[1]

References

 
WikiGenes - Universities