The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AppppA     [(2R,3S,4R,5R)-5-(6- aminopurin-9-yl)-3,4...

Synonyms: CHEMBL339385, CHEBI:17422, HMDB01211, AC1L2IWP, LS-15171, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Diadenosine tetraphosphate

 

High impact information on Diadenosine tetraphosphate

 

Chemical compound and disease context of Diadenosine tetraphosphate

  • apaH- mutants lack the hydrolase responsible for degradation of AppppN dinucleotides in Escherichia coli and show a greater than or equal to 16-fold increase in AppppA under nonstress conditions [8].
  • A total of 13 phosphonate analogues of bis(5'-adenosyl) tetraphosphate (AppppA) have been tested as substrates and inhibitors of the asymmetrically cleaving bis(5'-nucleosidyl) tetraphosphatase (NppppNase) from Artemia and the symmetrically cleaving NppppNase from Escherichia coli [9].
  • Introduction of one methylene (as in I and III) [or bromomethylene (as in II)] group into AppppA results in a 3-15-fold increase of its affinity for lupin and Escherichia coli AppppA hydrolases [10].
 

Biological context of Diadenosine tetraphosphate

 

Anatomical context of Diadenosine tetraphosphate

 

Associations of Diadenosine tetraphosphate with other chemical compounds

 

Gene context of Diadenosine tetraphosphate

 

Analytical, diagnostic and therapeutic context of Diadenosine tetraphosphate

References

  1. AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Bochner, B.R., Lee, P.C., Wilson, S.W., Cutler, C.W., Ames, B.N. Cell (1984) [Pubmed]
  2. AppppA binds to several proteins in Escherichia coli, including the heat shock and oxidative stress proteins DnaK, GroEL, E89, C45 and C40. Johnstone, D.B., Farr, S.B. EMBO J. (1991) [Pubmed]
  3. Inhibition of simian virus 40 DNA replication in vitro by poly(ADP-ribosyl)ated diadenosine tetraphosphate. Baker, J.C., Smale, S.T., Tjian, R., Ames, B.N. J. Biol. Chem. (1987) [Pubmed]
  4. The g5R (D250) gene of African swine fever virus encodes a Nudix hydrolase that preferentially degrades diphosphoinositol polyphosphates. Cartwright, J.L., Safrany, S.T., Dixon, L.K., Darzynkiewicz, E., Stepinski, J., Burke, R., McLennan, A.G. J. Virol. (2002) [Pubmed]
  5. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Moreira, M.C., Barbot, C., Tachi, N., Kozuka, N., Uchida, E., Gibson, T., Mendonça, P., Costa, M., Barros, J., Yanagisawa, T., Watanabe, M., Ikeda, Y., Aoki, M., Nagata, T., Coutinho, P., Sequeiros, J., Koenig, M. Nat. Genet. (2001) [Pubmed]
  6. Effect of diadenosine tetraphosphate microinjection on heat shock protein synthesis in Xenopus laevis oocytes. Guedon, G., Sovia, D., Ebel, J.P., Befort, N., Remy, P. EMBO J. (1985) [Pubmed]
  7. Rapid noninvasive detection of experimental atherosclerotic lesions with novel 99mTc-labeled diadenosine tetraphosphates. Elmaleh, D.R., Narula, J., Babich, J.W., Petrov, A., Fischman, A.J., Khaw, B.A., Rapaport, E., Zamecnik, P.C. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. An apaH mutation causes AppppA to accumulate and affects motility and catabolite repression in Escherichia coli. Farr, S.B., Arnosti, D.N., Chamberlin, M.J., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  9. Recognition of beta beta'-substituted and alpha beta,alpha'beta'-disubstituted phosphonate analogues of bis(5'-adenosyl) tetraphosphate by the bis(5'-nucleosidyl)-tetraphosphate pyrophosphohydrolases from Artemia embryos and Escherichia coli. McLennan, A.G., Taylor, G.E., Prescott, M., Blackburn, G.M. Biochemistry (1989) [Pubmed]
  10. Phosphonate analogues of diadenosine 5',5'''-P1,P4-tetraphosphate as substrates or inhibitors of procaryotic and eucaryotic enzymes degrading dinucleoside tetraphosphates. Guranowski, A., Biryukov, A., Tarussova, N.B., Khomutov, R.M., Jakubowski, H. Biochemistry (1987) [Pubmed]
  11. P1,P4-dithio-P2,P3-monochloromethylene diadenosine 5',5'''-P1,P4-tetraphosphate: a novel antiplatelet agent. Chan, S.W., Gallo, S.J., Kim, B.K., Guo, M.J., Blackburn, G.M., Zamecnik, P.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  12. In vivo levels of diadenosine tetraphosphate and adenosine tetraphospho-guanosine in Physarum polycephalum during the cell cycle and oxidative stress. Garrison, P.N., Mathis, S.A., Barnes, L.D. Mol. Cell. Biol. (1986) [Pubmed]
  13. Nudix hydrolases that degrade dinucleoside and diphosphoinositol polyphosphates also have 5-phosphoribosyl 1-pyrophosphate (PRPP) pyrophosphatase activity that generates the glycolytic activator ribose 1,5-bisphosphate. Fisher, D.I., Safrany, S.T., Strike, P., McLennan, A.G., Cartwright, J.L. J. Biol. Chem. (2002) [Pubmed]
  14. Structure and substrate-binding mechanism of human Ap4A hydrolase. Swarbrick, J.D., Buyya, S., Gunawardana, D., Gayler, K.R., McLennan, A.G., Gooley, P.R. J. Biol. Chem. (2005) [Pubmed]
  15. Diadenosine tetraphosphatase from human leukemia cells. Purification to homogeneity and partial characterization. Ogilvie, A., Antl, W. J. Biol. Chem. (1983) [Pubmed]
  16. High diadenosine tetraphosphate (Ap4A) level in germ cells and embryos of sea urchin and Xenopus and its effect on DNA synthesis. Weinmann-Dorsch, C., Grummt, F. Exp. Cell Res. (1985) [Pubmed]
  17. The binding of adenosine(5')tetraphospho(5')adenosine to calf thymus histones measured by non-equilibrium dialysis. Just, G., Holler, E. Biochem. J. (1987) [Pubmed]
  18. Identification and partial characterization of an adenosine(5')tetraphospho(5')adenosine hydrolase on intact bovine aortic endothelial cells. Ogilvie, A., Lüthje, J., Pohl, U., Busse, R. Biochem. J. (1989) [Pubmed]
  19. Dinucleotide receptor modulation by protein kinases (protein kinases A and C) and protein phosphatases in rat brain synaptic terminals. Pintor, J., Gualix, J., Miras-Portugal, M.T. J. Neurochem. (1997) [Pubmed]
  20. The Fhit tumor suppressor protein regulates the intracellular concentration of diadenosine triphosphate but not diadenosine tetraphosphate. Murphy, G.A., Halliday, D., McLennan, A.G. Cancer Res. (2000) [Pubmed]
  21. Dopamine receptor blockade inhibits the amphetamine-induced release of diadenosine polyphosphates, diadenosine tetraphosphate and diadenosine pentaphosphate, from neostriatum of the conscious rat. Pintor, J., Porras, A., Mora, F., Miras-Portugal, M.T. J. Neurochem. (1995) [Pubmed]
  22. A novel assay for determination of diadenosine polyphosphates in human platelets: studies in normotensive subjects and in patients with essential hypertension. Hollah, P., Hausberg, M., Kosch, M., Barenbrock, M., Letzel, M., Schlatter, E., Rahn, K.H. J. Hypertens. (2001) [Pubmed]
  23. Diadenosine tetraphosphate is co-released with ATP and catecholamines from bovine adrenal medulla. Castillo, C.J., Moro, M.A., Del Valle, M., Sillero, A., García, A.G., Sillero, M.A. J. Neurochem. (1992) [Pubmed]
  24. Association of allelic loss at the FHIT locus and p53 alterations with tumour kinetics and chromosomal instability in non-small cell lung carcinomas (NSCLCs). Garinis, G.A., Gorgoulis, V.G., Mariatos, G., Zacharatos, P., Kotsinas, A., Liloglou, T., Foukas, P., Kanavaros, P., Kastrinakis, N.G., Vassilakopoulos, T., Vogiatzi, T., Field, J.K., Kittas, C. J. Pathol. (2001) [Pubmed]
  25. Analysis of the catalytic and binding residues of the diadenosine tetraphosphate pyrophosphohydrolase from Caenorhabditis elegans by site-directed mutagenesis. Abdelghany, H.M., Bailey, S., Blackburn, G.M., Rafferty, J.B., McLennan, A.G. J. Biol. Chem. (2003) [Pubmed]
  26. Potent inhibition of specific diadenosine polyphosphate hydrolases by suramin. Rotllán, P., Rodríguez-Ferrer, C.R., Asensio, A.C., Oaknin, S. FEBS Lett. (1998) [Pubmed]
  27. Histidyl-tRNA synthetase. Freist, W., Verhey, J.F., Rühlmann, A., Gauss, D.H., Arnez, J.G. Biol. Chem. (1999) [Pubmed]
  28. Myocardial protection using diadenosine tetraphosphate with pharmacological preconditioning. Ahmet, I., Sawa, Y., Nishimura, M., Yamaguchi, T., Kitakaze, M., Matsuda, H. Ann. Thorac. Surg. (2000) [Pubmed]
  29. Crystallization of a complex of Caenorhabditis elegans diadenosine tetraphosphate hydrolase and a non-hydrolysable substrate analogue, AppCH2ppA. Bailey, S., Sedelnikova, S.E., Blackburn, G.M., Abdelghany, H.M., McLennan, A.G., Rafferty, J.B. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  30. Clinical application of diadenosine tetraphosphate (Ap4A:F-1500) for controlled hypotension. Kikuta, Y., Ohiwa, E., Okada, K., Watanabe, A., Haruki, S. Acta anaesthesiologica Scandinavica. (1999) [Pubmed]
  31. Cardioprotective effect of diadenosine tetraphosphate (AP4A) cardioplegia in isolated rat hearts. Ahmet, I., Sawa, Y., Nishimura, M., Matsuda, H. Heart and vessels. (2000) [Pubmed]
 
WikiGenes - Universities