The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Studies on the interaction with thymidylate synthase of analogues of 2'-deoxyuridine-5'-phosphate and 5-fluoro-2'-deoxyuridine-5'-phosphate with modified phosphate groups.

The role of the phosphate moiety of dUMP, and some analogues, in their interaction with mammalian thymidylate synthase, has been investigated. Substrate and inhibitor activities, and the pH-dependence of these activities, of dUMP and 5-FdUMP, as well as analogues with modified phosphate groups, were compared. The methyl ester of dUMP was neither a substrate nor an inhibitor. By contrast, the methyl ester of 5-FdUMP was a slow-binding inhibitor of the enzyme from L1210, Ehrlich ascites carcinoma and CCRF-CEM cells, with Ki values in the micromolar range. Both 5-FdUrd and the newly synthesized 5'-methylphosphonate of 5-FdUrd were also slow-binding inhibitors of the Ehrlich carcinoma enzyme, but with Ki values in the millimolar range. The interaction of dUMP, 5-FdUMP, and the methyl ester of the latter decreased with increase in pH, whereas that of the 5'-methyl-phosphonate of 5-FdUrd remained unchanged. The results are discussed in relation to the role of the phosphate hydroxyls of dUMP in binding to the enzyme. 5-FdUMP and its analogues exhibited differing interactions with two binding sites on the enzyme molecule, consistent with cooperativity of binding. A convenient procedure is described for the synthesis of 5-fluoro-2'-deoxyuridine-5'-methylphosphonate, applicable also to the preparation of other 5'-methylphosphonate analogues.[1]

References

 
WikiGenes - Universities