The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Effect of ruminal CO2 on gas exchange and ventilation in the Hereford calf.

The contribution of ruminal CO2 to gas exchange measurements and ventilation was determined in four rumen-fistulated Hereford steers at rest and during exercise. The calves were exercised at 1.4 and 2.2m X s-1 under three treatments: 1)full rumen with fistula sealed, 2) full rumen with fistula open, and 3) empty rumen. Measurements also were made at rest while flushing the empty rumen with either 100% N2 or a mixture of 50% CO2-50% N2. O2 consumption, CO2 production (Mco2), and ventilation were measured by collecting the expired gas. Absorption across the ruminal epithelium during rest increased Mco2 by 3%, whereas absorption and eructation together increased Mco2 by 15%. The respiratory exchange ratio (R) was significantly different among the three treatments at rest, but no differences were observed in R among the treatments during exercise. No changes were observed in minute ventilation among the three conditions, but a decrease in respiratory frequency and an increase in tidal volume occurred when the rumen was empty. These changes in ventilatory pattern may have been due to a decrease in body temperature when the rumen was empty. When the empty rumen was flushed with 50% CO2, Mco2 was increased 21% over the value observed when flushing with 100% N2. CO2 of fermentation origin is added to the expired gas by both eructation and absorption and has a significant effect on R in the resting animal, but no effect on R during exercise.[1]


  1. Effect of ruminal CO2 on gas exchange and ventilation in the Hereford calf. Kuhlmann, W.D., Dolezal, S.R., Fedde, M.R. J. Appl. Physiol. (1985) [Pubmed]
WikiGenes - Universities