Chemical structure of the active site of pig heart mitochondrial aspartate aminotransferase labeled with beta-chloro-l-alanine.
Formate-induced inactivation of pig heart mitochondrial aspartate aminotransferase by beta-chloro-L-alanine resulted in the modification of the epsilon-amino group of the lysyl residue which is involved in the formation of an aldimine bond with 4-formyl group of the coenzyme, pyridoxal 5'-phosphate. The tryptic peptide isolated from the labeled site of the enzyme was composed of 25 residues and exhibited positive circular dichroism at 325 and 254 nm where the pyridoxyl chromophore of the labeled site peptide absorbs, while the phosphopyridoxyl peptide isolated from the boro-hydride-reduced enzyme did not show any ellipticity in this spectral region. Its comparison with the analogous tryptic peptide from the labeled site of the cytosolic isoenzyme revealed a high degree of homology in their primary structures as well as in spectral properties. Structural analysis of the labeled site peptide and mechanistic consideration of the labeling process indicated that with both isoenzymes the phosphopyridoxyl group is covalently bound to the alpha amino group of the alanyl moiety derived from beta-chloro-L-alanine, the beta carbon of which is covalently linked to the epsilon-amino group of the lysyl residue.[1]References
- Chemical structure of the active site of pig heart mitochondrial aspartate aminotransferase labeled with beta-chloro-l-alanine. Morino, Y., Tanase, S. J. Biol. Chem. (1978) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg