The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Substance P hydrolysis by human serum cholinesterase.

Highly purified human serum cholinesterase (EC 3.1.1.8, also known as pseudocholinesterase and butyrylcholinesterase) had peptidase activity toward substance P. Digestion of substance P was monitored by high performance liquid chromatography, which separated three product peptides. The cleavages occurred sequentially. The first peptide to appear as Arg1-Pro2. The Km for this hydrolysis was 0.3 mM; maximum activity was 7.9 nmol min-1 mg-1 of protein, which corresponded to a turnover number of 0.6 min-1. A second cleavage yielded Lys3-Pro4. A third cleavage occurred at the C-terminal, where the amide was removed from Met11 to yield a peptide containing residues 5-11. Both the peptidase and esterase activities of the enzyme were completely inhibited by the anticholinesterase agent, diisopropylfluorophosphate. Substance P inhibited the hydrolysis of benzoylcholine (a good ester substrate) with a KI of 0.17 mM, indicating that substance P interacted with cholinesterase rather than with a trace contaminant. Peptidase and amidase activities for serum cholinesterase are novel activities for this enzyme. It was demonstrated previously that the related enzyme acetylcholinesterase (EC 3.1.1.7) catalyzed the hydrolysis of substance P, but at entirely different cleavage sites from those reported in the present work. Since butyrylcholinesterase is present in brain and muscle, as well as in serum, it may be involved in the physiological regulation of substance P.[1]

References

  1. Substance P hydrolysis by human serum cholinesterase. Lockridge, O. J. Neurochem. (1982) [Pubmed]
 
WikiGenes - Universities