Diurnal impact of locomotory activity and melatonin and N-acetylserotonin treatment on blood metabolite levels in the rainbow trout.
In rainbow trout forced to swim continuously at sustained speeds for six weeks, selected doses of melatonin or N-acetylserotonin (1.25 and 5.0 mg/kg body weight) injections caused no change in haematocrit. Melatonin did not produce any significant change in plasma glucose level either in the photophase or in the scotophase. However, diurnal variations were observed in the effect of melatonin on plasma free fatty acids (FFA). Melatonin was ineffective in causing any change in plasma FFA level during photophase but during scotophase, the higher dose (5.0 mg/kg) produced an increase in FFA while the lower dose (1.25 mg/kg) had no effect, N-acetylserotonin administration produced diurnal variation in its effect on both plasma glucose and FFA. The higher dose of N-acetylserotonin brought about a drop in plasma glucose level during photophase, but both doses were ineffective during scotophase. N-acetylserotonin produced no change in FFA during photophase, but during scotophase tended to lower FFA level. It is suggested that exercise shortens the time required to cause a hypoglycemic effect of N-acetylserotonin during photophase, blocks FFA release-inhibiting action of melatonin observed in photophase, and minimizes the time required for the FFA mobilizing action of melatonin in scotophase.[1]References
- Diurnal impact of locomotory activity and melatonin and N-acetylserotonin treatment on blood metabolite levels in the rainbow trout. John, T.M., Beamish, F.W., George, J.C. Arch. Int. Physiol. Biochim. (1983) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg