The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Characterization of basal and methylxanthine-stimulated Ca2+ transport in abalone spermatozoa.

Methylxanthines, such as 1-methyl-3-isobutylxanthine (MIX) and theophylline, stimulate abalone sperm 45Ca2+ uptake in a time- and concentration-dependent manner. MIX is the most potent compound tested, and the ability of these compounds to alter 45Ca2+ uptake resides with methyl or isobutyl substitution of the xanthine nucleus at multiple sites. Methylxanthine-stimulated 45Ca2+ uptake does not occur as a secondary consequence of cyclic nucleotide phosphodiesterase inhibition, and added cyclic nucleotides are also without effect. The dramatic elevation of intracellular cAMP concentrations and induction of the acrosome reaction of sperm incubated with methylxanthines in the presence of Ca2+ is mediated by a primary effect of methylxanthines on Ca2+ transport. Basal 45Ca2+ uptake occurs through a verapamil-insensitive site that obeys the properties of a simple diffusion-mediated process. MIX-stimulated 45Ca2+ uptake occurs through a carrier-mediated transport site that has low affinity for Ca2+ (Km = 19.9 mM) and is verapamil sensitive. 45Ca2+ uptake through both basal and MIX-stimulated sites is enhanced by low extracellular Na+ concentrations (less than or equal to 15 mM) and is not affected by either extracellular Mg2+ or K+ X 45Ca2+ uptake through both sites is pH sensitive, but this sensitivity is different for each site. These data suggest that methylxanthines can affect sperm function via primary effects on Ca2+ transport, which occur through a specific carrier-mediated site(s). It is possible that many of the previously described effects of methylxanthines on sperm function are mediated via such changes in Ca2+ conductance.[1]

References

  1. Characterization of basal and methylxanthine-stimulated Ca2+ transport in abalone spermatozoa. Kopf, G.S., Lewis, C.A., Vacquier, V.D. J. Biol. Chem. (1984) [Pubmed]
 
WikiGenes - Universities