Phosphate-activated glutaminase in relation to Huntington's disease and agonal state.
Involvement of phosphate-activated glutaminase in Huntington's disease and agonal state was investigated in caudate nucleus and frontal cortex from postmortem brains. In Huntington's disease the activities of phosphate-activated glutaminase, glutamic acid decarboxylase, succinic dehydrogenase, choline acetyltransferase, and acetylcholinesterase were significantly reduced in the caudate nucleus, but not in the frontal cortex. The activity of phosphate-activated glutaminase, and to a lesser extent of glutamic acid decarboxylase, was reduced in cases of terminal illness, as compared with cases of sudden death. Succinic dehydrogenase and choline acetyltransferase were reduced only in the few cases of prolonged and severe terminal illness. Enzyme activities of the caudate nucleus were more affected by agonal state than were those of frontal cortex. Results indicate that phosphate-activated glutaminase could be a useful marker of neuronal damage due to agonal state, and that phosphate-activated glutaminase and succinic dehydrogenase are reduced in Huntington's disease.[1]References
- Phosphate-activated glutaminase in relation to Huntington's disease and agonal state. Butterworth, J., Yates, C.M., Simpson, J. J. Neurochem. (1983) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg