The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Huntington Disease

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Huntington Disease

 

Psychiatry related information on Huntington Disease

 

High impact information on Huntington Disease

 

Chemical compound and disease context of Huntington Disease

 

Biological context of Huntington Disease

 

Anatomical context of Huntington Disease

 

Gene context of Huntington Disease

 

Analytical, diagnostic and therapeutic context of Huntington Disease

References

  1. Reversal of neuropathology and motor dysfunction in a conditional model of Huntington's disease. Yamamoto, A., Lucas, J.J., Hen, R. Cell (2000) [Pubmed]
  2. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Ravikumar, B., Vacher, C., Berger, Z., Davies, J.E., Luo, S., Oroz, L.G., Scaravilli, F., Easton, D.F., Duden, R., O'Kane, C.J., Rubinsztein, D.C. Nat. Genet. (2004) [Pubmed]
  3. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Dragatsis, I., Levine, M.S., Zeitlin, S. Nat. Genet. (2000) [Pubmed]
  4. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington's disease. Ona, V.O., Li, M., Vonsattel, J.P., Andrews, L.J., Khan, S.Q., Chung, W.M., Frey, A.S., Menon, A.S., Li, X.J., Stieg, P.E., Yuan, J., Penney, J.B., Young, A.B., Cha, J.H., Friedlander, R.M. Nature (1999) [Pubmed]
  5. Polyglutamine expansion as a pathological epitope in Huntington's disease and four dominant cerebellar ataxias. Trottier, Y., Lutz, Y., Stevanin, G., Imbert, G., Devys, D., Cancel, G., Saudou, F., Weber, C., David, G., Tora, L. Nature (1995) [Pubmed]
  6. Neurochemistry of dopamine in Huntington's dementia and normal aging. Stahl, S.M., Thiemann, S., Faull, K.F., Barchas, J.D., Berger, P.A. Arch. Gen. Psychiatry (1986) [Pubmed]
  7. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., Lurz, R., Hasenbank, R., Bates, G.P., Lehrach, H., Wanker, E.E. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  8. Kynurenines in the CNS: from endogenous obscurity to therapeutic importance. Stone, T.W. Prog. Neurobiol. (2001) [Pubmed]
  9. CAG repeat lengths in X- and Y-bearing sperm indicate that gender bias during transmission of Huntington's disease gene is determined in the embryo. Kovtun, I.V., Welch, G., Guthrie, H.D., Hafner, K.L., McMurray, C.T. J. Biol. Chem. (2004) [Pubmed]
  10. Neuropsychological characteristics of Huntington's disease carriers: a double blind study. Rosenberg, N.K., Sørensen, S.A., Christensen, A.L. J. Med. Genet. (1995) [Pubmed]
  11. Improvement of Huntington's disease with olanzapine and valproate. Grove, V.E., Quintanilla, J., DeVaney, G.T. N. Engl. J. Med. (2000) [Pubmed]
  12. Amino-terminal fragments of mutant huntingtin show selective accumulation in striatal neurons and synaptic toxicity. Li, H., Li, S.H., Johnston, H., Shelbourne, P.F., Li, X.J. Nat. Genet. (2000) [Pubmed]
  13. Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Gacy, A.M., Goellner, G., Juranić, N., Macura, S., McMurray, C.T. Cell (1995) [Pubmed]
  14. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., Wanker, E.E. Cell (1997) [Pubmed]
  15. Brain GABA levels in asymptomatic Huntington's disease. Reynolds, G.P., Pearson, S.J. N. Engl. J. Med. (1990) [Pubmed]
  16. Reduced cerebral glucose metabolism in asymptomatic subjects at risk for Huntington's disease. Mazziotta, J.C., Phelps, M.E., Pahl, J.J., Huang, S.C., Baxter, L.R., Riege, W.H., Hoffman, J.M., Kuhl, D.E., Lanto, A.B., Wapenski, J.A. N. Engl. J. Med. (1987) [Pubmed]
  17. Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington's disease. Albin, R.L., Young, A.B., Penney, J.B., Handelin, B., Balfour, R., Anderson, K.D., Markel, D.S., Tourtellotte, W.W., Reiner, A. N. Engl. J. Med. (1990) [Pubmed]
  18. Levodopa provocative test for Huntington's disease. Fahn, S. N. Engl. J. Med. (1980) [Pubmed]
  19. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Zeitlin, S., Liu, J.P., Chapman, D.L., Papaioannou, V.E., Efstratiadis, A. Nat. Genet. (1995) [Pubmed]
  20. Cloning of the alpha-adducin gene from the Huntington's disease candidate region of chromosome 4 by exon amplification. Taylor, S.A., Snell, R.G., Buckler, A., Ambrose, C., Duyao, M., Church, D., Lin, C.S., Altherr, M., Bates, G.P., Groot, N. Nat. Genet. (1992) [Pubmed]
  21. The Huntington's disease candidate region exhibits many different haplotypes. MacDonald, M.E., Novelletto, A., Lin, C., Tagle, D., Barnes, G., Bates, G., Taylor, S., Allitto, B., Altherr, M., Myers, R. Nat. Genet. (1992) [Pubmed]
  22. [3H]GABA binding in brains from Huntington's chorea patients: altered regulation by phospholipids? Lloyd, K.G., Davidson, L. Science (1979) [Pubmed]
  23. Mental symptoms in Huntington's disease and a possible primary aminergic neuron lesion. Mann, J.J., Stanley, M., Gershon, S., Rossor, M. Science (1980) [Pubmed]
  24. Increased TRH content of the basal ganglia in Huntington's disease. Spindel, E.R., Wurtman, R.J., Bird, E.D. N. Engl. J. Med. (1980) [Pubmed]
  25. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Shiang, R., Thompson, L.M., Zhu, Y.Z., Church, D.M., Fielder, T.J., Bocian, M., Winokur, S.T., Wasmuth, J.J. Cell (1994) [Pubmed]
  26. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N.R., Doi, H., Kurosawa, M., Nekooki, M., Nukina, N. Nat. Med. (2004) [Pubmed]
  27. Alterations in L-glutamate binding in Alzheimer's and Huntington's diseases. Greenamyre, J.T., Penney, J.B., Young, A.B., D'Amato, C.J., Hicks, S.P., Shoulson, I. Science (1985) [Pubmed]
  28. Huntingtin fragments that aggregate go their separate ways. DiFiglia, M. Mol. Cell (2002) [Pubmed]
  29. Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease. Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B.R., Goffredo, D., Conti, L., MacDonald, M.E., Friedlander, R.M., Silani, V., Hayden, M.R., Timmusk, T., Sipione, S., Cattaneo, E. Science (2001) [Pubmed]
  30. Interference by huntingtin and atrophin-1 with cbp-mediated transcription leading to cellular toxicity. Nucifora , F.C., Sasaki, M., Peters, M.F., Huang, H., Cooper, J.K., Yamada, M., Takahashi, H., Tsuji, S., Troncoso, J., Dawson, V.L., Dawson, T.M., Ross, C.A. Science (2001) [Pubmed]
  31. HAP1 and intracellular trafficking. Li, X.J., Li, S.H. Trends Pharmacol. Sci. (2005) [Pubmed]
  32. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Steffan, J.S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y.Z., Gohler, H., Wanker, E.E., Bates, G.P., Housman, D.E., Thompson, L.M. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  33. Cdc42-interacting protein 4 binds to huntingtin: neuropathologic and biological evidence for a role in Huntington's disease. Holbert, S., Dedeoglu, A., Humbert, S., Saudou, F., Ferrante, R.J., Néri, C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  34. Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson's disease. Du, Y., Ma, Z., Lin, S., Dodel, R.C., Gao, F., Bales, K.R., Triarhou, L.C., Chernet, E., Perry, K.W., Nelson, D.L., Luecke, S., Phebus, L.A., Bymaster, F.P., Paul, S.M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  35. Decreased expression of striatal signaling genes in a mouse model of Huntington's disease. Luthi-Carter, R., Strand, A., Peters, N.L., Solano, S.M., Hollingsworth, Z.R., Menon, A.S., Frey, A.S., Spektor, B.S., Penney, E.B., Schilling, G., Ross, C.A., Borchelt, D.R., Tapscott, S.J., Young, A.B., Cha, J.H., Olson, J.M. Hum. Mol. Genet. (2000) [Pubmed]
  36. Neurological abnormalities in a knock-in mouse model of Huntington's disease. Lin, C.H., Tallaksen-Greene, S., Chien, W.M., Cearley, J.A., Jackson, W.S., Crouse, A.B., Ren, S., Li, X.J., Albin, R.L., Detloff, P.J. Hum. Mol. Genet. (2001) [Pubmed]
  37. Cerebrospinal fluid levels of quinolinic acid in Huntington's disease and schizophrenia. Schwarcz, R., Tamminga, C.A., Kurlan, R., Shoulson, I. Ann. Neurol. (1988) [Pubmed]
 
WikiGenes - Universities