The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Comparison of the transport of chlorozotocin and CCNU in L1210 leukemia and murine bone marrow cells in vitro.

The uptake of radiolabeled CLZ and CCNU by L1210 leukemia and murine bone marrow cells was investigated to determine whether the preferential ratio of alkylation of L1210 DNA to murine bone marrow DNA of 1.3 by 0.1 mM CLZ, as against a ratio of 0.6 by equimolar CCNU, is secondary to differences in uptake. The concentration of intact CLZ was determined in the medium and the intracellular water space. The cell: medium ratio (intracellular concentration/medium concentration) of CLZ in bone marrow cells was greater than that seen for L1210 cells. However, the intracellular CLZ concentration generally remained constant in both cell types at 37 degrees C, between 7.0 and 10.0 pmole/microliters. The L1210: murine bone marrow cell ratio of intracellular CLZ concentrations was approximately 1.0 from 10 to 60 min. The intracellular CCNU concentration during the uptake of 0.1 mM (chloroethyl-U-14C) CCNU at 37 degrees C was constant at 85 pmol/microliters from 10 to 60 min in L1210 cells, but slowly decreased from 66 pmole/microliters at 20 min to 43 pmole/microliters at 60 min in bone marrow cells. The L1210: murine bone marrow cell ratio of intracellular CCNU concentrations ranged from 1.45 to 1.98 from 20 to 60 min. Thus, it appears that the preferential ratio of alkylation of L1210 DNA to murine bone marrow DNA by CLZ compared with equimolar CCNU cannot be explained by differences in uptake of the two agents by the two cell types. The uptake of 0.1 mM CLZ at 37 degrees C by L1210 cells in McCoy's 5A medium containing 300 mg% glucose was not affected by the addition of 5 mM cold drug, nor was it affected by the absence of glucose in the medium, with or without cold drug. This suggests that CLZ uptake into L1210 cells is via passive diffusion and that CLZ does not enter these cells via the glucose transport mechanism.[1]

References

  1. Comparison of the transport of chlorozotocin and CCNU in L1210 leukemia and murine bone marrow cells in vitro. Lazarus, P., Germina, J.S., Dufour, M., Palmer, G., Wallace, D., Panasci, L.C. Cancer Chemother. Pharmacol. (1983) [Pubmed]
 
WikiGenes - Universities