Characterization of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Receptor modulating.
Plants performing crassulacean acid metabolism show a large nocturnal accumulation of malic acid in the vacuole of the photosynthetic cells. It has been postulated that an H+-translocating ATPase energizes the transport of malic acid across the tonoplast into the vacuole. In the present work we have characterized the ATPase activity associated with vacuoles of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana and compare it with other phosphohydrolases. Vacuoles were isolated by polybase-induced lysis of mesophyll-cell protoplasts. The vacuoles had a high activity of unspecific acid phosphatase (pH optimum 5.3). The acid phosphatase was strongly inhibited by ammonium molybdate (with 50% inhibition at about 0.5 mmol m-3), but was not completely inhibited even at much higher ammonium-molybdate concentrations. In contrast, the vacuolar ATPase activity, assayed in the presence of 100 mmol m-3 ammonium molybdate, had a pH optimum of 8. 0. ATP was the preferred substrate, but GTP, ITP and ADP were hydrolyzed at appreciable rates. The mean ATPase activity at pH 8.0 was 14.5 nmol h-1 (10(3) vacuoles)-1, an average 13% of which was attributable to residual acid-phosphatase activity. Inorganic-pyrophosphatase activity could not be demonstrated unambiguously. The vacuolar ATPase activity was Mg2+-dependent, had an apparent Km for MgATP2- of 0.31 mol m-3, and was 32% stimulated by 50 mol m-3 KCl. Of the inhibitors tested, oligomycin slightly inhibited the vacuolar ATPase activity and diethylstilbestrol and NO-3 were both markedly inhibitory. Dicyclohexylcarbodiimide and tributyltin were also strongly inhibitory. Tributyltin caused a 50% inhibition at about 0.3 mmol m-3. This is taken as evidence that the vacuolar ATPase might function as an H+-translocating ATPase. It is shown that the measured activity of the vacuolar ATPase would be of the right order to account for the observed rates of nocturnal malic-acid accumulation in K. daigremontiana.[1]References
- Characterization of the vacuolar ATPase activity of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana. Receptor modulating. Smith, J.A., Uribe, E.G., Ball, E., Heuer, S., Lüttge, U. Eur. J. Biochem. (1984) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg