The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

L-malate     (2S)-2-hydroxybutanedioic acid

Synonyms: L-Apple acid, L-Malic acid, S-(-)-Malate, NSC-9232, Apple acid, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of L-Apple acid


Psychiatry related information on L-Apple acid


High impact information on L-Apple acid


Chemical compound and disease context of L-Apple acid


Biological context of L-Apple acid

  • These data are consistent with a previously suggested second "substrate" binding site proposed to explain the enzymatic activation observed at high concentrations of the substrate, L-malate (Telegdi, M., Wolfe, D. V., and Wolfe, R. G. (1973) J. Biol. Chem. 248, 6484-6489) [17].
  • The activation of malic enzyme by Mn2+ at high levels of L-malate shows biphasic kinetics yielding two activator constants for Mn2+ [18].
  • Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its K(m)(PEP) and sensitivity to L-malate inhibition, while enhancing glucose-6-P activation [19].
  • The tricarboxylic acid cycle enzyme fumarase (fumarate hydratase; EC catalyzes the reversible hydration of fumarate to L-malate [20].
  • In permeabilized cells, the DNA damage generated by AA in combination with either Cf, L-malate or CaCl(2) was blunted by catalase [21].

Anatomical context of L-Apple acid

  • ATP (2MM) caused the uptake of 10 nmol of citrate into the mitochondria coincident with the output of a similar amount of L-malate [22].
  • The inducible crassulacean acid metabolism (CAM) plant Mesembryanthemum crystallinum accumulates malic acid during the night and converts it to starch during the day via a pathway that, because it is located in different subcellular compartments, depends on specific metabolite transport across membranes [23].
  • Electrophysiological studies using the patch-clamp technique were performed on isolated vacuoles from leaf mesophyll cells of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana to characterize the malate transport system responsible for nocturnal malic acid accumulation [24].
  • 2. Adenosine triphosphatase, NADH dehydrogenase and L-malate intact protoplasts, but were readily detected in intact stage II or IV forespores, consistent with reversed polarity of the outer forespore membrane relative to the mother-cell plasma membrane [25].
  • 2. Methods are described for measurement of incorporation of 32Pi into the complex in rat heart mitochondria oxidizing 2-oxoglutarate + L-malate (total, sites 1, 2 and 3) [26].

Associations of L-Apple acid with other chemical compounds


Gene context of L-Apple acid


Analytical, diagnostic and therapeutic context of L-Apple acid


  1. Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. Madern, D., Cai, X., Abrahamsen, M.S., Zhu, G. Mol. Biol. Evol. (2004) [Pubmed]
  2. Selection for a large genetic duplication in Salmonella typhimurium. Straus, D.S. Genetics (1975) [Pubmed]
  3. Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation. Olsen, E.B., Russell, J.B., Henick-Kling, T. J. Bacteriol. (1991) [Pubmed]
  4. The proton motive force generated in Leuconostoc oenos by L-malate fermentation. Salema, M., Lolkema, J.S., San Romão, M.V., Lourero Dias, M.C. J. Bacteriol. (1996) [Pubmed]
  5. Repression of sporulation in Bacillus subtilis by L-malate. Ohné, M., Rutberg, B. J. Bacteriol. (1976) [Pubmed]
  6. Improved synthesis with high yield and increased molecular weight of poly(alpha,beta-malic acid) by direct polycondensation. Kajiyama, T., Kobayashi, H., Taguchi, T., Kataoka, K., Tanaka, J. Biomacromolecules (2004) [Pubmed]
  7. Cloning and expression of the malolactic gene of Pediococcus damnosus NCFB1832 in Saccharomyces cerevisiae. Bauer, R., Volschenk, H., Dicks, L.M. J. Biotechnol. (2005) [Pubmed]
  8. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Volschenk, H., Viljoen, M., Grobler, J., Petzold, B., Bauer, F., Subden, R.E., Young, R.A., Lonvaud, A., Denayrolles, M., van Vuuren, H.J. Nat. Biotechnol. (1997) [Pubmed]
  9. Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase. Birktoft, J.J., Fernley, R.T., Bradshaw, R.A., Banaszak, L.J. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  10. Arg-425 of the citrate transporter CitP is responsible for high affinity binding of di- and tricarboxylates. Bandell, M., Lolkema, J.S. J. Biol. Chem. (2000) [Pubmed]
  11. Transcriptional regulation of the Schizosaccharomyces pombe malic enzyme gene, mae2. Viljoen, M., Volschenk, H., Young, R.A., van Vuuren, H.J. J. Biol. Chem. (1999) [Pubmed]
  12. Fermentation of fumarate and L-malate by Clostridium formicoaceticum. Dorn, M., Andreesen, J.R., Gottschalk, G. J. Bacteriol. (1978) [Pubmed]
  13. H2-dependent anaerobic growth of Escherichia coli on L-malate: succinate formation. Macy, J., Kulla, H., Gottschalk, G. J. Bacteriol. (1976) [Pubmed]
  14. Respiratory control determines respiration and nitrogenase activity of Rhizobium leguminosarum bacteroids. Haaker, H., Szafran, M., Wassink, H., Klerk, H., Appels, M. J. Bacteriol. (1996) [Pubmed]
  15. Efficiency of light-driven metabolite transport in the photosynthetic bacterium Rhodospirillum rubrum. Zebrower, M., Loach, P.A. J. Bacteriol. (1982) [Pubmed]
  16. Dicarboxylic acid transport in membrane vesicles from Bacillus subtilis. Bisschop, A., Doddema, H., Konings, W.N. J. Bacteriol. (1975) [Pubmed]
  17. Regulation of mitochondrial malate dehydrogenase. Evidence for an allosteric citrate-binding site. Mullinax, T.R., Mock, J.N., McEvily, A.J., Harrison, J.H. J. Biol. Chem. (1982) [Pubmed]
  18. Mechanism of malic enzyme from pigeon liver. Magnetic resonance and kinetic studies of the role of Mn2+. Hsu, R.Y., Mildvan, A.S., Chang, G., Fung, C. J. Biol. Chem. (1976) [Pubmed]
  19. In vivo regulatory phosphorylation of novel phosphoenolpyruvate carboxylase isoforms in endosperm of developing castor oil seeds. Tripodi, K.E., Turner, W.L., Gennidakis, S., Plaxton, W.C. Plant Physiol. (2005) [Pubmed]
  20. Molecular characterization of potato fumarate hydratase and functional expression in Escherichia coli. Nast, G., Müller-Röber, B. Plant Physiol. (1996) [Pubmed]
  21. Arachidonic acid induces calcium-dependent mitochondrial formation of species promoting strand scission of genomic DNA. Guidarelli, A., Sestili, P., Fiorani, M., Cantoni, O. Free Radic. Biol. Med. (2000) [Pubmed]
  22. The effect of adenosine triphosphate on the tricarboxylate transporting system of rat liver mitochondria. Robinson, B.H., Cheema-Dhadli, S., Halperin, M.L. J. Biol. Chem. (1975) [Pubmed]
  23. Plastidic metabolite transporters and their physiological functions in the inducible crassulacean acid metabolism plant Mesembryanthemum crystallinum. Häusler, R.E., Baur, B., Scharte, J., Teichmann, T., Eicks, M., Fischer, K.L., Flügge, U.I., Schubert, S., Weber, A., Fischer, K. Plant J. (2000) [Pubmed]
  24. Vacuolar malate uptake is mediated by an anion-selective inward rectifier. Hafke, J.B., Hafke, Y., Smith, J.A., Lüttge, U., Thiel, G. Plant J. (2003) [Pubmed]
  25. Biochemical evidence for the reversed polarity of the outer membrane of the bacterial forespore. Wilkinson, B.J., Deans, J.A., Ellar, D.J. Biochem. J. (1975) [Pubmed]
  26. Incorporation of [32P]phosphate into the pyruvate dehydrogenase complex in rat heart mitochondria. Sale, G.J., Randle, P.J. Biochem. J. (1980) [Pubmed]
  27. Malic enzyme from archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties. Bartolucci, S., Rella, R., Guagliardi, A., Raia, C.A., Gambacorta, A., De Rosa, M., Rossi, M. J. Biol. Chem. (1987) [Pubmed]
  28. Purification and characterization of hydroxycinnamoyl D-glucose. Quinate hydroxycinnamoyl transferase in the root of sweet potato, Ipomoea batatas Lam. Villegas, R.J., Kojima, M. J. Biol. Chem. (1986) [Pubmed]
  29. Peroxisomal beta-oxidation of branched chain fatty acids in rat liver. Evidence that carnitine palmitoyltransferase I prevents transport of branched chain fatty acids into mitochondria. Singh, H., Beckman, K., Poulos, A. J. Biol. Chem. (1994) [Pubmed]
  30. Oxygen-18 incorporation into malic acid during nocturnal carbon dioxide fixation in crassulacean acid metabolism plants. A new approach to estimating in vivo carbonic anhydrase activity. Holtum, J.A., Summons, R., Roeske, C.A., Comins, H.N., O'Leary, M.H. J. Biol. Chem. (1984) [Pubmed]
  31. A study of the maloalcoholic fermentation pathway in Schizosaccharomyces pombe. Maconi, E., Manachini, P.L., Aragozzini, F., Gennari, C., Ricca, G.S. Biochem. J. (1984) [Pubmed]
  32. The putative L-lactate dehydrogenase from Methanococcus jannaschii is an NADPH-dependent L-malate dehydrogenase. Madern, D. Mol. Microbiol. (2000) [Pubmed]
  33. Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae. Camarasa, C., Bidard, F., Bony, M., Barre, P., Dequin, S. Appl. Environ. Microbiol. (2001) [Pubmed]
  34. Cloning and sequencing the gene encoding 3-phosphoglycerate kinase from mesophilic Methanobacterium bryantii and thermophilic Methanothermus fervidus. Fabry, S., Heppner, P., Dietmaier, W., Hensel, R. Gene (1990) [Pubmed]
  35. Identification of an archaeal 2-hydroxy acid dehydrogenase catalyzing reactions involved in coenzyme biosynthesis in methanoarchaea. Graupner, M., Xu, H., White, R.H. J. Bacteriol. (2000) [Pubmed]
  36. Nonidentity of the cDNA sequence of human breast cancer cell malic enzyme to that from the normal human cell. Chou, W.Y., Huang, S.M., Chang, G.G. J. Protein Chem. (1996) [Pubmed]
  37. Investigation of the subunit interactions in malate dehydrogenase. Bleile, D.M., Schulz, R.A., Harrison, J.H., Gregory, E.M. J. Biol. Chem. (1977) [Pubmed]
  38. Nutritional and hormonal regulation of malic enzyme synthesis in rat mammary gland. Lobato, M.F., Ros, M., Moreno, F.J., García-Ruíz, J.P. Biochem. J. (1986) [Pubmed]
  39. Direct chiral resolution of malic acid in apple juice by ligand-exchange capillary electrophoresis using copper(II)-L-tartaric acid as a chiral selector. Kodama, S., Yamamoto, A., Matsunaga, A., Soga, T., Hayakawa, K. Electrophoresis (2001) [Pubmed]
  40. Malate dehydrogenase, anticooperative NADH, and L-malate binding in ternary complexes with Supernatant pig heart enzyme. Mueggler, P.A., Dahlquist, F.W., Wolfe, R.G. Biochemistry (1975) [Pubmed]
  41. Malate transport in Schizosaccharomyces pombe. Osothsilp, C., Subden, R.E. J. Bacteriol. (1986) [Pubmed]
WikiGenes - Universities