The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopy.

Investigations of metal-substituted human lactoferrins by fluorescence, resonance Raman, and electron paramagnetic resonance (EPR) spectroscopy confirm the close similarity between lactoferrin and serum transferrin. As in the case of Fe(III)- and Cu(II)-transferrin, a significant quenching of apolactoferrin's intrinsic fluorescence is caused by the interaction of Fe(III), Cu(II), Cr(III), Mn(III), and Co(III) with specific metal binding sites. Laser excitation of these same metal-lactoferrins produces resonance Raman spectral features at ca. 1605, 1505, 1275, and 1175 cm-1. These bands are characteristic of tyrosinate coordination to the metal ions as has been observed previously for serum transferins and permit the principal absorption band (lambda max between 400 and 465 nm) in each of the metal-lactoferrins to be assigned to charge transfer between the metal ion and tyrosinate ligands. Furthermore, as in serum transferrin the two metal binding sites in lactoferrin can be distinguished by EPR spectroscopy, particularly with the Cr(III)-substituted protein. Only one of the two sites in lactoferrin allows displacement of Cr(III) by Fe(III). Lactoferrin is known to differ from serum transferrin in its enhanced affinity for iron. This is supported by kinetic studies which show that the rate of uptake of Fe(III) from Fe(III)--citrate is 10 times faster for apolactoferrin than for apotransferrin. Furthermore, the more pronounced conformational change which occurs upon metal binding to lactoferrin is corroborated by the production of additional EPR-detectable Cu(II) binding sites in Mn(III)-lactoferrin. The lower pH required for iron removal from lactoferrin causes some permanent change in the protein as judged by altered rates of Fe(III) uptake and altered EPR spectra in the presence of Cu(II). Thus, the common method of producing apolactoferrin by extensive dialysis against citric acid (pH 2) appears to have an adverse effect on the protein.[1]

References

  1. Studies on human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance Raman spectroscopy. Ainscough, E.W., Brodie, A.M., Plowman, J.E., Bloor, S.J., Loehr, J.S., Loehr, T.M. Biochemistry (1980) [Pubmed]
 
WikiGenes - Universities