The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cyclic AMP-dependent protein kinase in mitochondria and cytosol from different-sized follicles and corpora lutea of porcine ovaries.

cAMP-dependent protein kinase was examined in mitochondria and cytosol prepared from different-sized antral follicles and corpora lutea of porcine ovaries. In all ovarian tissues examined except small follicles, protein kinase-specific activity was significantly higher in mitochondria than in cytosol, with the highest to lowest activities being found in medium (4-6 mm) follicles, large (7-12 mm) follicles, corpora lutea, and small (1-3 mm) follicles, respectively. Using the photoaffinity analogue [32P]8-N3cAMP, two major cAMP binding proteins with Mr = 47,000 (the apparent regulatory subunit of protein kinase Type I) and 54,000-56,000 (Type II) were found in all ovarian preparations. Type II was predominant in the cytosol of all ovarian samples, with the cytosolic Type I to Type II ratio increasing from approximately 0.05 in small and medium follicles top approximately 0.20 in large follicles and corpora lutea. In contrast, ovarian mitochondrial preparations contained relatively more Type I than did cytosol, with the mitochondrial Type I to Type II ratio increasing from approximately 0.50 in small and medium follicles to 0.88 in large follicles and 2.96 in corpora lutea. Also, mitochondrial [4-14C]cholesterol conversion and 3 beta-hydroxysteroid dehydrogenase/isomerase activities increased with follicle size and luteinization. These results suggest that Type I may play a role in the regulation of ovarian mitochondrial steroidogenesis.[1]

References

 
WikiGenes - Universities