The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Corpus Luteum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Corpus Luteum

 

High impact information on Corpus Luteum

  • Hysterectomy in these nonprimate species causes maintenance of the corpora lutea, whereas in primates, removal of the uterus does not influence the cyclical regression of the corpus luteum [6].
  • Maturation of secondary ovarian follicles into corpora lutea, which express high levels of p27, was markedly impaired [7].
  • When nonpregnant cycling female mice were chronically treated with AGM-1470, inhibition of endometrial maturation and corpora lutea was observed [8].
  • C/EBP beta-deficient ovaries lack corpora lutea and fail to down-regulate expression of the prostaglandin endoperoxidase synthase 2 and P450 aromatase genes in response to gonadotropins [9].
  • In contrast, levels of mRNA for P450scc increased only gradually in follicles but were markedly increased by the LH surge and high concentrations of cAMP and then appeared to be constitutively expressed in rat corpora lutea in a cAMP-independent manner [10].
 

Chemical compound and disease context of Corpus Luteum

 

Biological context of Corpus Luteum

 

Anatomical context of Corpus Luteum

 

Associations of Corpus Luteum with chemical compounds

 

Gene context of Corpus Luteum

 

Analytical, diagnostic and therapeutic context of Corpus Luteum

References

  1. The different forms of the prolactin receptor in the rat corpus luteum: developmental expression and hormonal regulation in pregnancy. Telleria, C.M., Parmer, T.G., Zhong, L., Clarke, D.L., Albarracin, C.T., Duan, W.R., Linzer, D.I., Gibori, G. Endocrinology (1997) [Pubmed]
  2. The effects of melatonin and hypothyroidism on estradiol and gonadotropin levels in female Syrian hamsters. Vriend, J., Bertalanffy, F.D., Ralcewicz, T.A. Biol. Reprod. (1987) [Pubmed]
  3. Formation of ovarian follicular cysts and corpora lutea after treatment with antihistamine or indomethacin in prepubertal gilts. Hall, J.A., Meisterling, E.M., Lewis, P.E., Dailey, R.A. Biol. Reprod. (1989) [Pubmed]
  4. Gonadal defects and hormonal alterations in transgenic mice expressing a single chain human chorionic gonadotropin-lutropin receptor complex. Meehan, T.P., Harmon, B.G., Overcast, M.E., Yu, K.K., Camper, S.A., Puett, D., Narayan, P. J. Mol. Endocrinol. (2005) [Pubmed]
  5. Luteinizing hormone receptor disorder in endometriosis. Rönnberg, L., Kauppila, A., Rajaniemi, H. Fertil. Steril. (1984) [Pubmed]
  6. Luteolysis: a neuroendocrine-mediated event. McCracken, J.A., Custer, E.E., Lamsa, J.C. Physiol. Rev. (1999) [Pubmed]
  7. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Fero, M.L., Rivkin, M., Tasch, M., Porter, P., Carow, C.E., Firpo, E., Polyak, K., Tsai, L.H., Broudy, V., Perlmutter, R.M., Kaushansky, K., Roberts, J.M. Cell (1996) [Pubmed]
  8. Critical components of the female reproductive pathway are suppressed by the angiogenesis inhibitor AGM-1470. Klauber, N., Rohan, R.M., Flynn, E., D'Amato, R.J. Nat. Med. (1997) [Pubmed]
  9. An essential role for C/EBPbeta in female reproduction. Sterneck, E., Tessarollo, L., Johnson, P.F. Genes Dev. (1997) [Pubmed]
  10. Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Richards, J.S., Hedin, L. Annu. Rev. Physiol. (1988) [Pubmed]
  11. Neonatal exposures to technical methoxychlor alters ovaries in adult mice. Eroschenko, V.P., Abuel-Atta, A.A., Grober, M.S. Reprod. Toxicol. (1995) [Pubmed]
  12. The administration of cortisone to female B6A mice during their immune adaptive period causes anovulation and the formation of ovarian cysts. Chapman, J.C., Min, S., Kunaporn, S., Tung, K., Shah, S., Michael, S.D. Am. J. Reprod. Immunol. (2002) [Pubmed]
  13. Epidermal growth factor prevents prepartum luteolysis in the rat. Ribeiro, M.L., Aisemberg, J., Billi, S., Farina, M.G., Meiss, R., McCann, S., Rettori, V., Villalón, M., Franchi, A.M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  14. Ovarian expression of cellular Ki-ras p21 varies with physiological status. Palejwala, S., Goldsmith, L.T. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  15. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Hu, Y.C., Wang, P.H., Yeh, S., Wang, R.S., Xie, C., Xu, Q., Zhou, X., Chao, H.T., Tsai, M.Y., Chang, C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  16. Misregulated Wnt/beta-catenin signaling leads to ovarian granulosa cell tumor development. Boerboom, D., Paquet, M., Hsieh, M., Liu, J., Jamin, S.P., Behringer, R.R., Sirois, J., Taketo, M.M., Richards, J.S. Cancer Res. (2005) [Pubmed]
  17. Cyclic AMP-dependent and -independent regulation of cholesterol side chain cleavage cytochrome P-450 (P-450scc) in rat ovarian granulosa cells and corpora lutea. cDNA and deduced amino acid sequence of rat P-450scc. Oonk, R.B., Krasnow, J.S., Beattie, W.G., Richards, J.S. J. Biol. Chem. (1989) [Pubmed]
  18. The cyclin-dependent kinase inhibitors p27Kip1 and p21Cip1 cooperate to restrict proliferative life span in differentiating ovarian cells. Jirawatnotai, S., Moons, D.S., Stocco, C.O., Franks, R., Hales, D.B., Gibori, G., Kiyokawa, H. J. Biol. Chem. (2003) [Pubmed]
  19. Cyclic AMP-dependent protein kinase in mitochondria and cytosol from different-sized follicles and corpora lutea of porcine ovaries. Dimino, M.J., Bieszczad, R.R., Rowe, M.J. J. Biol. Chem. (1981) [Pubmed]
  20. Protein kinase stimulation of a reconstituted cholesterol side chain cleavage enzyme system in the bovine corpus luteum. Caron, M.G., Goldstein, S., Savard, K., Marsh, J.M. J. Biol. Chem. (1975) [Pubmed]
  21. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. Herrlich, A., Kühn, B., Grosse, R., Schmid, A., Schultz, G., Gudermann, T. J. Biol. Chem. (1996) [Pubmed]
  22. Paracrine regulation of ovarian granulosa cell differentiation by stanniocalcin (STC) 1: mediation through specific STC1 receptors. Luo, C.W., Kawamura, K., Klein, C., Hsueh, A.J. Mol. Endocrinol. (2004) [Pubmed]
  23. Estrogen modulates Ca(2+)-independent lipid-stimulated kinase in the rabbit corpus luteum of pseudopregnancy. Identification of luteal estrogen-modulated lipid-stimulated kinase as protein kinase C delta. Maizels, E.T., Miller, J.B., Cutler, R.E., Jackiw, V., Carney, E.M., Mizuno, K., Ohno, S., Hunzicker-Dunn, M. J. Biol. Chem. (1992) [Pubmed]
  24. Identification of fatty acid esters of pregnenolone and allopregnanolone from bovine corpora lutea. Albert, D.H., Ponticorvo, L., Lieberman, S. J. Biol. Chem. (1980) [Pubmed]
  25. Levels of messenger ribonucleic acid encoding cholesterol side-chain cleavage cytochrome P-450, 17 alpha-hydroxylase cytochrome P-450, adrenodoxin, and low density lipoprotein receptor in bovine follicles and corpora lutea throughout the ovarian cycle. Rodgers, R.J., Waterman, M.R., Simpson, E.R. Mol. Endocrinol. (1987) [Pubmed]
  26. Prostaglandin F2alpha binding sites in human corpora lutea. Rao, C.V., Griffin, L.P., Carman, F.R. J. Clin. Endocrinol. Metab. (1977) [Pubmed]
  27. Differential expression of the angiogenic factor genes vascular endothelial growth factor (VEGF) and endocrine gland-derived VEGF in normal and polycystic human ovaries. Ferrara, N., Frantz, G., LeCouter, J., Dillard-Telm, L., Pham, T., Draksharapu, A., Giordano, T., Peale, F. Am. J. Pathol. (2003) [Pubmed]
  28. Ovarian follicle development requires Smad3. Tomic, D., Miller, K.P., Kenny, H.A., Woodruff, T.K., Hoyer, P., Flaws, J.A. Mol. Endocrinol. (2004) [Pubmed]
  29. Cell-specific knockout of steroidogenic factor 1 reveals its essential roles in gonadal function. Jeyasuria, P., Ikeda, Y., Jamin, S.P., Zhao, L., De Rooij, D.G., Themmen, A.P., Behringer, R.R., Parker, K.L. Mol. Endocrinol. (2004) [Pubmed]
  30. Pregnancy-associated plasma protein-A gene expression in human ovaries is restricted to healthy follicles and corpora lutea. Hourvitz, A., Widger, A.E., Filho, F.L., Chang, R.J., Adashi, E.Y., Erickson, G.F. J. Clin. Endocrinol. Metab. (2000) [Pubmed]
  31. Human ovarian expression of 17 beta-hydroxysteroid dehydrogenase types 1, 2, and 3. Zhang, Y., Word, R.A., Fesmire, S., Carr, B.R., Rainey, W.E. J. Clin. Endocrinol. Metab. (1996) [Pubmed]
  32. Luteinization-associated changes in protein stability of the regulatory subunit of the type I cAMP-dependent protein kinase. Jackiw, V., Hunzicker-Dunn, M. J. Biol. Chem. (1992) [Pubmed]
  33. Human luteal cells express dipeptidyl peptidase IV on the cell surface. Fujiwara, H., Maeda, M., Imai, K., Fukuoka, M., Yasuda, K., Takakura, K., Mori, T. J. Clin. Endocrinol. Metab. (1992) [Pubmed]
  34. Corticotropin-releasing hormone (CRH) inhibits steroid biosynthesis by cultured human granulosa-lutein cells in a CRH and interleukin-1 receptor-mediated fashion. Ghizzoni, L., Mastorakos, G., Vottero, A., Barreca, A., Furlini, M., Cesarone, A., Ferrari, B., Chrousos, G.P., Bernasconi, S. Endocrinology (1997) [Pubmed]
  35. Molecular cloning of an ovine ovarian tissue inhibitor of metalloproteinases: ontogeny of messenger ribonucleic acid expression and in situ localization within preovulatory follicles and luteal tissue. Smith, G.W., Goetz, T.L., Anthony, R.V., Smith, M.F. Endocrinology (1994) [Pubmed]
 
WikiGenes - Universities