The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Instability of transposase activity: evidence from bacteriophage mu DNA replication.

Transposition of genetic elements involves coupled replication and integration events catalyzed in part by a class of proteins called transposases. We have asked whether the transposase activity of bacteriophage Mu (the Mu A protein) is stable and capable of catalyzing multiple rounds of coupled replication/integration, or whether its continued synthesis is required to maintain Mu DNA replication. Inhibition of protein synthesis during the lytic cycle with chloramphenicol inhibited Mu DNA synthesis with a half-life of approximately 3 min, demonstrating a need for continued protein synthesis to maintain Mu DNA replication. Synthesis of specific Mu-encoded proteins was inhibited by infecting a host carrying a temperature-sensitive suppressor, at permissive temperature, with Mu amber phages, then shifting to nonpermissive temperature. When Aam phages were used, Mu DNA replication was inhibited with kinetics essentially identical to those with chloramphenicol addition; hence, it is likely that continued synthesis of the Mu A protein is required to maintain Mu DNA replication. The data suggest that the activity of the Mu A protein is unstable, and raise the possibility that the Mu A protein and other transposases may be used stoichiometrically rather than catalytically.[1]

References

 
WikiGenes - Universities