The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

AMP deaminase as a control system of glycolysis in yeast. Mechanism of the inhibition of glycolysis by fatty acid and citrate.

The role of fatty acid and citrate on the interaction of the AMP deaminase (EC reaction with glycolysis was investigated using permeabilized yeast cells. (a) Linolenate and citrate inhibited glycolytic flux and the recovery of the adenylate energy charge; however, linolenate remarkably retarded the depletion of the total adenylate pool, which was not at all affected by the addition of citrate. (b) Linolenate inhibited AMP deaminase activity in situ, resulting in the subsequent decrease in ammonium production, which reduced the activity of 6-phosphofructokinase (EC, whereas linolenate itself had no ability to inhibit the phosphofructokinase activity in the presence of excess ammonium concentration. (c) Citrate inhibited the activity of phosphofructokinase in situ in the presence and absence of ammonium ion, followed by an inhibition of glycolysis; however, AMP deaminase activity was not inhibited by citrate. The inhibition of glycolysis by fatty acids can be accounted for by the lowered activity of phosphofructokinase as a result of the decreased level of ammonium ion through the inhibition of the AMP deaminase reaction by these ligands, whereas the effect of citrate on glycolysis is a direct inhibition of phosphofructokinase without affecting the activity of AMP deaminase. Fatty acid and citrate, a principal metabolic product of fatty acid oxidation, can be responsible for the control of glycolysis in two different manners.[1]


WikiGenes - Universities