The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Glycolysis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Glycolysis

 

Psychiatry related information on Glycolysis

  • The marked inhibition of brain and muscles phosphofructokinase (the rate-limiting enzyme in glycolysis) induced by Li+, may play an important role in the mechanism of the therapeutic action of this agent in the manic state [6].
  • The capacity for glycolysis in muscle biopsies obtained from long-term heavy alcohol drinking patients has been compared with tissue from control subjects by assay in vitro of the total activities of glycogen phosphorylase, phosphofructokinase and fructose 1,6-bisphosphatase, key regulatory enzymes in the anaerobic glycolytic pathway [7].
  • Time-response studies with Ca(2+)-ionophore A23187 have revealed dual effects on the distribution of phosphofructokinase (PFK) (EC 2.7.1.11), the rate-limiting enzyme of glycolysis, between the cytoskeletal and cytosolic (soluble) fractions of the cell [8].
  • It is suggested that acetylcholine liberated from sympathetic fibres causes the activation of glycolysis in muscles, which in its turn induces vasodilation in resting skeletal muscles and increase of muscle performance during emotional stress [9].
 

High impact information on Glycolysis

 

Chemical compound and disease context of Glycolysis

 

Biological context of Glycolysis

 

Anatomical context of Glycolysis

 

Associations of Glycolysis with chemical compounds

 

Gene context of Glycolysis

  • Only one gene coding for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), a key enzyme in the control of glycolysis, is known to be functional in man, mouse, rat and chicken [34].
  • Furthermore, CD28 controls a primary response pathway, inducing a level of glucose uptake and glycolysis in excess of that needed to maintain cellular ATP/ADP levels or macromolecular synthesis [25].
  • Enhanced glycerol production caused by overexpression of GPD1 encoding glycerol-3-phosphate dehydrogenase also suppressed the growth defect of ggs1/tps1 delta mutants, suggesting a novel role for glycerol production in the control of glycolysis [35].
  • Phosphofructokinase (PFK) plays a major role in glycolysis [36].
  • 6-Phosphofructokinase (PFK) plays a central role in the regulation of glycolysis in both normal and neoplastic cells [37].
 

Analytical, diagnostic and therapeutic context of Glycolysis

References

  1. Cellular applications of 31P and 13C nuclear magnetic resonance. Shulman, R.G., Brown, T.R., Ugurbil, K., Ogawa, S., Cohen, S.M., den Hollander, J.A. Science (1979) [Pubmed]
  2. The forebrain is not essential for sympathoadrenal hyperglycemic response to glucoprivation. DiRocco, R.J., Grill, H.J. Science (1979) [Pubmed]
  3. Reevaluation of the role of cellular hypoxia and bioenergetic failure in sepsis. Hotchkiss, R.S., Karl, I.E. JAMA (1992) [Pubmed]
  4. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. Russell, R.R., Li, J., Coven, D.L., Pypaert, M., Zechner, C., Palmeri, M., Giordano, F.J., Mu, J., Birnbaum, M.J., Young, L.H. J. Clin. Invest. (2004) [Pubmed]
  5. Characterization of cellular defects of insulin action in type 2 (non-insulin-dependent) diabetes mellitus. Del Prato, S., Bonadonna, R.C., Bonora, E., Gulli, G., Solini, A., Shank, M., DeFronzo, R.A. J. Clin. Invest. (1993) [Pubmed]
  6. Effects of lithium on the activities of phosphofructokinase and phosphoglucomutase and on glucose-1,6-diphosphate levels in rat muscles, brain and liver. Nordenberg, J., Kaplansky, M., Beery, E., Klein, S., Beitner, R. Biochem. Pharmacol. (1982) [Pubmed]
  7. Glycogen content and activities of key glycolytic enzymes in muscle biopsies from control subjects and patients with chronic alcoholic skeletal myopathy. Martin, F.C., Levi, A.J., Slavin, G., Peters, T.J. Clin. Sci. (1984) [Pubmed]
  8. Effects of Ca(2+)-ionophore A23187 and calmodulin antagonists on regulatory mechanisms of glycolysis and cell viability of NIH-3T3 fibroblasts. Ashkenazy-Shahar, M., Beitner, R. Mol. Genet. Metab. (1999) [Pubmed]
  9. On the mechanism of an increase of muscle performance and of vasodilation during emotional stress in man. Kotz, Y.M., Rodionov, I.M., Sitnikov, B.F., Tkhorevsky, V.I., Vinogradova, O.L. Pflugers Arch. (1978) [Pubmed]
  10. Methylglyoxal modification of mSin3A links glycolysis to angiopoietin-2 transcription. Yao, D., Taguchi, T., Matsumura, T., Pestell, R., Edelstein, D., Giardino, I., Suske, G., Ahmed, N., Thornalley, P.J., Sarthy, V.P., Hammes, H.P., Brownlee, M. Cell (2006) [Pubmed]
  11. Methylglyoxal comes of AGE. Ramasamy, R., Yan, S.F., Schmidt, A.M. Cell (2006) [Pubmed]
  12. Insulin resistance in essential hypertension. Ferrannini, E., Buzzigoli, G., Bonadonna, R., Giorico, M.A., Oleggini, M., Graziadei, L., Pedrinelli, R., Brandi, L., Bevilacqua, S. N. Engl. J. Med. (1987) [Pubmed]
  13. Effect of severe burn injury on substrate cycling by glucose and fatty acids. Wolfe, R.R., Herndon, D.N., Jahoor, F., Miyoshi, H., Wolfe, M. N. Engl. J. Med. (1987) [Pubmed]
  14. Injury of neoplastic cells by murine macrophages leads to inhibition of mitochondrial respiration. Granger, D.L., Taintor, R.R., Cook, J.L., Hibbs, J.B. J. Clin. Invest. (1980) [Pubmed]
  15. Excess purine degradation in exercising muscles of patients with glycogen storage disease types V and VII. Mineo, I., Kono, N., Shimizu, T., Hara, N., Yamada, Y., Sumi, S., Nonaka, K., Tarui, S. J. Clin. Invest. (1985) [Pubmed]
  16. Methionine-sensitive glycolysis in transformed cells. Boerner, P., Racker, E. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  17. Improved protection of the hypertrophied left ventricle by histidine-containing cardioplegia. Takeuchi, K., Buenaventura, P., Cao-Danh, H., Glynn, P., Simplaceanu, E., McGowan, F.X., del Nido, P.J. Circulation (1995) [Pubmed]
  18. Inhibition by 2,5-anhydromannitol of glycolysis in isolated rat hepatocytes and in Ehrlich ascites cells. Riquelme, P.T., Kneer, N.M., Wernette-Hammond, M.E., Lardy, H.A. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  19. The neurotrophic factor neuroleukin is 90% homologous with phosphohexose isomerase. Chaput, M., Claes, V., Portetelle, D., Cludts, I., Cravador, A., Burny, A., Gras, H., Tartar, A. Nature (1988) [Pubmed]
  20. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Weiss, J.N., Lamp, S.T. Science (1987) [Pubmed]
  21. Alkylating DNA damage stimulates a regulated form of necrotic cell death. Zong, W.X., Ditsworth, D., Bauer, D.E., Wang, Z.Q., Thompson, C.B. Genes Dev. (2004) [Pubmed]
  22. Fc receptor modulation in mononuclear phagocytes maintained on immobilized immune complexes occurs by diffusion of the receptor molecule. Michl, J., Pieczonka, M.M., Unkeless, J.C., Bell, G.I., Silverstein, S.C. J. Exp. Med. (1983) [Pubmed]
  23. Interference of glycogenolysis with glycolysis in pancreatic islets from glucose-infused rats. Malaisse, W.J., Maggetto, C., Leclercq-Meyer, V., Sener, A. J. Clin. Invest. (1993) [Pubmed]
  24. Formaldehyde-induced hemolysis during chronic hemodialysis. Orringer, E.P., Mattern, W.D. N. Engl. J. Med. (1976) [Pubmed]
  25. The CD28 signaling pathway regulates glucose metabolism. Frauwirth, K.A., Riley, J.L., Harris, M.H., Parry, R.V., Rathmell, J.C., Plas, D.R., Elstrom, R.L., June, C.H., Thompson, C.B. Immunity (2002) [Pubmed]
  26. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. Kelley, D., Mitrakou, A., Marsh, H., Schwenk, F., Benn, J., Sonnenberg, G., Arcangeli, M., Aoki, T., Sorensen, J., Berger, M. J. Clin. Invest. (1988) [Pubmed]
  27. Feeding hungry neurons: astrocytes deliver food for thought. Meeks, J.P., Mennerick, S. Neuron (2003) [Pubmed]
  28. Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium? Kusuoka, H., Marban, E. J. Clin. Invest. (1994) [Pubmed]
  29. The honeybee syndrome - implications of the teratogenicity of mannose in rat-embryo culture. Freinkel, N., Lewis, N.J., Akazawa, S., Roth, S.I., Gorman, L. N. Engl. J. Med. (1984) [Pubmed]
  30. Human testis-specific PGK gene lacks introns and possesses characteristics of a processed gene. McCarrey, J.R., Thomas, K. Nature (1987) [Pubmed]
  31. Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Bernstein, B.E., Michels, P.A., Hol, W.G. Nature (1997) [Pubmed]
  32. Oxidized proteins in erythrocytes are rapidly degraded by the adenosine triphosphate-dependent proteolytic system. Goldberg, A.L., Boches, F.S. Science (1982) [Pubmed]
  33. 5-Thio-D-glucose selectively potentiates hyperthermic killing of hypoxic tumor cells. Kim, J.H., Kim, S.H., Hahn, E.W., Song, C.W. Science (1978) [Pubmed]
  34. Unusual abundance of vertebrate 3-phosphate dehydrogenase pseudogenes. Piechaczyk, M., Blanchard, J.M., Riaad-El Sabouty, S., Dani, C., Marty, L., Jeanteur, P. Nature (1984) [Pubmed]
  35. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. Luyten, K., Albertyn, J., Skibbe, W.F., Prior, B.A., Ramos, J., Thevelein, J.M., Hohmann, S. EMBO J. (1995) [Pubmed]
  36. Glycogenosis type VII (Tarui disease) in a Swedish family: two novel mutations in muscle phosphofructokinase gene (PFK-M) resulting in intron retentions. Nichols, R.C., Rudolphi, O., Ek, B., Exelbert, R., Plotz, P.H., Raben, N. Am. J. Hum. Genet. (1996) [Pubmed]
  37. Alterations in the activity and isozymic profile of human phosphofructokinase during malignant transformation in vivo and in vitro: transformation- and progression-linked discriminants of malignancy. Vora, S., Halper, J.P., Knowles, D.M. Cancer Res. (1985) [Pubmed]
  38. Effects of fat on glucose uptake and utilization in patients with non-insulin-dependent diabetes. Boden, G., Chen, X. J. Clin. Invest. (1995) [Pubmed]
  39. Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Miki, K., Qu, W., Goulding, E.H., Willis, W.D., Bunch, D.O., Strader, L.F., Perreault, S.D., Eddy, E.M., O'Brien, D.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  40. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Comi, G.P., Fortunato, F., Lucchiari, S., Bordoni, A., Prelle, A., Jann, S., Keller, A., Ciscato, P., Galbiati, S., Chiveri, L., Torrente, Y., Scarlato, G., Bresolin, N. Ann. Neurol. (2001) [Pubmed]
  41. Seven days of euglycemic hyperinsulinemia induces insulin resistance for glucose metabolism but not hypertension, elevated catecholamine levels, or increased sodium retention in conscious normal rats. Koopmans, S.J., Ohman, L., Haywood, J.R., Mandarino, L.J., DeFronzo, R.A. Diabetes (1997) [Pubmed]
  42. Normalization of skeletal muscle glycogen synthesis and glycolysis in rosiglitazone-treated Zucker fatty rats: an in vivo nuclear magnetic resonance study. Jucker, B.M., Schaeffer, T.R., Haimbach, R.E., McIntosh, T.S., Chun, D., Mayer, M., Ohlstein, D.H., Davis, H.M., Smith, S.A., Cobitz, A.R., Sarkar, S.K. Diabetes (2002) [Pubmed]
 
WikiGenes - Universities