The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Industrene 120     (9E,12E,15E)-octadeca- 9,12,15-trienoic acid

Synonyms: Perilla oil, CCRIS 656, Shiso oil, Oils, perilla, CCRIS 7126, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of alpha-Linolenic acid

 

Psychiatry related information on alpha-Linolenic acid

  • The effects of dietary alpha-linolenic acid deficiency were studied in a model of learning, the Morris water maze, and on the following effects of morphine: increase in locomotor activity, modifications of rectal temperature and analgesia [6].
  • After optimization, the standard in vitro conditions for the measurement of delta6-desaturase activity were as follows: 60 micromol x L(-1) alpha-linolenic acid (C18:3n-3), reaction time of 20 min and protein content of 0.4 mg [7].
  • Dietary deprivation of linolenic acid (LNA) during the perinatal life on the other hand, resulted in losses of DHA from cerebral PLs [M. Schiefermeier, E. Yavin, n-3 deficient and DHA-enriched diets during critical periods of the developing prenatal rat brain, J. Lipid Res. 43 (2002) 124-131] [8].
 

High impact information on alpha-Linolenic acid

 

Chemical compound and disease context of alpha-Linolenic acid

 

Biological context of alpha-Linolenic acid

 

Anatomical context of alpha-Linolenic acid

 

Associations of alpha-Linolenic acid with other chemical compounds

 

Gene context of alpha-Linolenic acid

  • An S. cerevisiae gpx1 Delta/gpx2 Delta/gpx3 Delta mutant was defective for growth in medium supplemented with the oxidation-sensitive polyunsaturated fatty acid linolenate (18:3) [34].
  • Genetic analyses using plasmids carrying the genes, PHO5 and PHO3, that code for repressible APase and constitutive APase, respectively, showed that linolenic acid induced the formation of repressible APase [35].
  • It is concluded that, with the exception of IL-6 production, a modest increase in intake of either ALNA or EPA+DHA does not influence the functional activity of mononuclear cells [36].
  • Moreover, conjugated linolenic acid from bitter gourd at lower concentrations that was without effects by itself synergistically stimulated TNF-alpha-induced apoptosis [37].
  • ERK kinase inhibitors significantly reduced the anti-apoptotic effects of linolenic acid [38].
 

Analytical, diagnostic and therapeutic context of alpha-Linolenic acid

References

  1. A prospective study of dietary fat and risk of prostate cancer. Giovannucci, E., Rimm, E.B., Colditz, G.A., Stampfer, M.J., Ascherio, A., Chute, C.C., Willett, W.C. J. Natl. Cancer Inst. (1993) [Pubmed]
  2. Diets for secondary prevention of coronary heart disease: can linolenic acid substitute for oily fish? McKeigue, P. Lancet (1994) [Pubmed]
  3. Antibacterial activity of hydrolysed linseed oil and linolenic acid against methicillin-resistant staphylococcus aureus. McDonald, M.I., Graham, I., Harvey, K.J., Sinclair, A. Lancet (1981) [Pubmed]
  4. Polyunsaturated fatty acids are potent neuroprotectors. Lauritzen, I., Blondeau, N., Heurteaux, C., Widmann, C., Romey, G., Lazdunski, M. EMBO J. (2000) [Pubmed]
  5. Lipid and protein segregation in Escherichia coli membrane: morphological and structural study of different cytoplasmic membrane fractions. Letellier, L., Moudden, H., Shechter, E. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  6. Influence of a dietary alpha-linolenic acid deficiency on learning in the Morris water maze and on the effects of morphine. Francès, H., Coudereau, J.P., Sandouk, P., Clément, M., Monier, C., Bourre, J.M. Eur. J. Pharmacol. (1996) [Pubmed]
  7. Myristic acid increases delta6-desaturase activity in cultured rat hepatocytes. Jan, S., Guillou, H., D'Andrea, S., Daval, S., Bouriel, M., Rioux, V., Legrand, P. Reprod. Nutr. Dev. (2004) [Pubmed]
  8. Versatile roles of docosahexaenoic acid in the prenatal brain: From pro- and anti-oxidant features to regulation of gene expression. Yavin, E. Prostaglandins Leukot. Essent. Fatty Acids (2006) [Pubmed]
  9. Polyunsaturated fatty acids activate the Drosophila light-sensitive channels TRP and TRPL. Chyb, S., Raghu, P., Hardie, R.C. Nature (1999) [Pubmed]
  10. The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Conconi, A., Smerdon, M.J., Howe, G.A., Ryan, C.A. Nature (1996) [Pubmed]
  11. Prospective study of plasma fatty acids and risk of prostate cancer. Gann, P.H., Hennekens, C.H., Sacks, F.M., Grodstein, F., Giovannucci, E.L., Stampfer, M.J. J. Natl. Cancer Inst. (1994) [Pubmed]
  12. Effect of dietary 18-carbon fatty acids on growth of transplantable mammary adenocarcinomas in mice. Abraham, S., Hillyard, L.A. J. Natl. Cancer Inst. (1983) [Pubmed]
  13. Cholesterol reduces the effects of dihydroxy bile acids and fatty acids on water and solute transport in the human jejunum. Broor, S.L., Slota, T., Ammon, H.V. J. Clin. Invest. (1980) [Pubmed]
  14. Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. Schoonjans, K., Watanabe, M., Suzuki, H., Mahfoudi, A., Krey, G., Wahli, W., Grimaldi, P., Staels, B., Yamamoto, T., Auwerx, J. J. Biol. Chem. (1995) [Pubmed]
  15. n-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Lemaitre, R.N., King, I.B., Mozaffarian, D., Kuller, L.H., Tracy, R.P., Siscovick, D.S. Am. J. Clin. Nutr. (2003) [Pubmed]
  16. Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Maeda, H., Sakuragi, Y., Bryant, D.A., Dellapenna, D. Plant Physiol. (2005) [Pubmed]
  17. Familial adenomatous polyposis patients have high levels of arachidonic acid and docosahexaenoic acid and low levels of linoleic acid and alpha-linolenic acid in serum phospholipids. Almendingen, K., H??stmark, A.T., Fausa, O., Mosd??l, A., Aabakken, L., Vatn, M.H. Int. J. Cancer (2007) [Pubmed]
  18. Docosahexaenoic acid membrane content and mRNA expression of acyl-CoA oxidase and of peroxisome proliferator-activated receptor-delta are modulated in Y79 retinoblastoma cells differently by low and high doses of alpha-linolenic acid. Langelier, B., Furet, J.P., Perruchot, M.H., Alessandri, J.M. J. Neurosci. Res. (2003) [Pubmed]
  19. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Doares, S.H., Syrovets, T., Weiler, E.W., Ryan, C.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  20. The effects of low dietary levels of polyunsaturates on alcohol-induced liver disease in rhesus monkeys. Pawlosky, R.J., Flynn, B.M., Salem, N. Hepatology (1997) [Pubmed]
  21. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. Rubbo, H., Radi, R., Trujillo, M., Telleri, R., Kalyanaraman, B., Barnes, S., Kirk, M., Freeman, B.A. J. Biol. Chem. (1994) [Pubmed]
  22. Identification of a jasmonate-regulated allene oxide synthase that metabolizes 9-hydroperoxides of linoleic and linolenic acids. Itoh, A., Schilmiller, A.L., McCaig, B.C., Howe, G.A. J. Biol. Chem. (2002) [Pubmed]
  23. Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. Sinha, S., Perdomo, G., Brown, N.F., O'Doherty, R.M. J. Biol. Chem. (2004) [Pubmed]
  24. Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats. Reddy, B.S., Sugie, S. Cancer Res. (1988) [Pubmed]
  25. Identification of a Peroxisomal Acyl-activating Enzyme Involved in the Biosynthesis of Jasmonic Acid in Arabidopsis. Koo, A.J., Chung, H.S., Kobayashi, Y., Howe, G.A. J. Biol. Chem. (2006) [Pubmed]
  26. Effect of dietary alpha-linolenate on platelet-activating factor production in rat peritoneal polymorphonuclear leukocytes. Horii, T., Satouchi, K., Kobayashi, Y., Saito, K., Watanabe, S., Yoshida, Y., Okuyama, H. J. Immunol. (1991) [Pubmed]
  27. Antioxidant role of Rhodnius prolixus heme-binding protein. Protection against heme-induced lipid peroxidation. Dansa-Petretski, M., Ribeiro, J.M., Atella, G.C., Masuda, H., Oliveira, P.L. J. Biol. Chem. (1995) [Pubmed]
  28. Are dietary saturated, monounsaturated, and polyunsaturated fatty acids deposited to the same extent in adipose tissue of rabbits? Lin, D.S., Connor, W.E., Spenler, C.W. Am. J. Clin. Nutr. (1993) [Pubmed]
  29. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K. Plant Cell (2001) [Pubmed]
  30. Precursor role of arachidonic acid in release of slow reacting substance from rat basophilic leukemia cells. Jakschik, B.A., Falkenhein, S., Parker, C.W. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  31. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Sauer, L.A., Dauchy, R.T., Blask, D.E. Cancer Res. (2000) [Pubmed]
  32. Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity. Padilla, S., Jonassen, T., Jiménez-Hidalgo, M.A., Fernández-Ayala, D.J., López-Lluch, G., Marbois, B., Navas, P., Clarke, C.F., Santos-Ocaña, C. J. Biol. Chem. (2004) [Pubmed]
  33. A novel class of oxylipins, sn1-O-(12-oxophytodienoyl)-sn2-O-(hexadecatrienoyl)-monogalactosyl Diglyceride, from Arabidopsis thaliana. Stelmach, B.A., Müller, A., Hennig, P., Gebhardt, S., Schubert-Zsilavecz, M., Weiler, E.W. J. Biol. Chem. (2001) [Pubmed]
  34. Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. Avery, A.M., Avery, S.V. J. Biol. Chem. (2001) [Pubmed]
  35. Induction of repressible acid phosphatase by unsaturated fatty acid in Saccharomyces cerevisiae. Doi, S., Watanabe, M., Tanabe, K., Nakasako, M., Yoshimura, M. J. Cell. Sci. (1989) [Pubmed]
  36. Comparison of the effects of linseed oil and different doses of fish oil on mononuclear cell function in healthy human subjects. Wallace, F.A., Miles, E.A., Calder, P.C. Br. J. Nutr. (2003) [Pubmed]
  37. Control of life cycle of mouse adipogenic 3T3-L1 cells by dietary lipids and metabolic factors. Nishimura, K., Hatano, Y., Setoyama, T., Tsumagari, H., Miyashita, K., Lu, S., Jisaka, M., Nagaya, T., Yokota, K. Appl. Biochem. Biotechnol. (2004) [Pubmed]
  38. Free fatty acids inhibit serum deprivation-induced apoptosis through GPR120 in a murine enteroendocrine cell line STC-1. Katsuma, S., Hatae, N., Yano, T., Ruike, Y., Kimura, M., Hirasawa, A., Tsujimoto, G. J. Biol. Chem. (2005) [Pubmed]
  39. Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. Neuringer, M., Connor, W.E., Van Petten, C., Barstad, L. J. Clin. Invest. (1984) [Pubmed]
  40. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. de Lorgeril, M., Renaud, S., Mamelle, N., Salen, P., Martin, J.L., Monjaud, I., Guidollet, J., Touboul, P., Delaye, J. Lancet (1994) [Pubmed]
  41. Inhibitory effect of polyunsaturated fatty acids on the growth of Helicobacter pylori: a possible explanation of the effect of diet on peptic ulceration. Thompson, L., Cockayne, A., Spiller, R.C. Gut (1994) [Pubmed]
  42. Effect of alpha-linolenic acid supplementation during pregnancy on maternal and neonatal polyunsaturated fatty acid status and pregnancy outcome. de Groot, R.H., Hornstra, G., van Houwelingen, A.C., Roumen, F. Am. J. Clin. Nutr. (2004) [Pubmed]
 
WikiGenes - Universities