The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics.

The activation of cyclic AMP-dependent protein kinase has been found to be the predominant mode by which cyclic AMP (cAMP) leads to alterations of a large variety of cellular functions. The activation of the kinase results in the release of the catalytic subunit which as the free enzyme possesses phosphotransferase activity for a variety of specific protein substrates. Using a sensitive and specific cytofluorometric technique we monitored the appearance of free catalytic subunit in Reuber H35 hepatoma cells in culture after incubation with N6-1'-O-dibutyryl-cyclic AMP (DBcAMP), 8-bromoadenosine-3':5'-cyclic monophosphate (8-BrcAMP), and glucagon. The cytochemical method employs the heat-stable inhibitor of the free catalytic subunit which has been conjugated to fluorescein isothiocyanate (F:PKI) and was validated as described in the companion paper (Fletcher and Byus. 1982. J. Cell Biol. 93:719-726). Here we studied the temporal and spatial kinetics of the free catalytic subunit following activation of cAMP-dependent protein kinase by increasing concentrations of DBcAMP,8-BrcAMP, and glucagon. Under similar conditions protein kinase activation was also assessed biochemically in H35 cell supernatants by assaying the protein kinase activity ratio. Incubation of the hepatoma cells with DBcAMP (0.1 mM) led to an increase in the activity ratio from 0.2 in control cultures to a value of nearly 1.0 within a 1- to 2-h period. During this same period using the F:PKI probe, a significant increase in cytoplasmic and nucleolar fluorescence indicative of the release of the free catalytic subunit was coincidentally observed. In contrast to the rapid appearance of catalytic subunit in the cytoplasm and nucleolus of the cell within 5-15 min of the addition of DBcAMP, discernible nucleoplasmic fluorescence did not occur until after 1 h. H35 cell cultures incubated with 8-BrcAMP (0.01-1.0 mM) exhibited a more rapid activation of the protein kinase measured cytochemically compared to the cells treated with DBcAMP. Cultures incubated with 8-BrcAMP had significantly increased cytoplasmic and nucleolar fluorescence compared to unstimulated cells within 1 min of the addition of the analogue and reached a maximal level within 15 min. By employing a microspectrophotometer a distinct dose-dependent increase in cellular fluorescence (i.e., free catalytic subunit) was observed as the concentration of 8-BrcAMP was increased from 0.01 to 1.0 mM at 1, 5, 15, and 60 min following stimulation. The addition of glucagon (10(-6) M) to the culture also led to the activation of cAMP-dependent protein kinase as determined by an increase in the activity ratio. This increase was paralleled throughout the incubation period by a marked elevation in cytoplasmic and nucleolar fluorescence. The results reported herein suggest that both cyclic nucleotide analogues and a polypeptide hormone lead to the activation of cAMP-dependent protein kinase in similar intracellular compartments in Reuber H35 hepatoma cells...[1]

References

 
WikiGenes - Universities