The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Analysis of benzo(a)pyrene:DNA adducts formed in cells in culture by immobilized boronate chromatography.

A chromatographic procedure using boronic acid residues linked to a cellulose support [(N-(N'-[m-(dihydroxyboryl)-phenyl]succinamyl)amino]ethyl cellulose), used by Sawicki et al. (Cancer Res., 43: 3212-3218, 1983) for analysis of 7,12-dimethylbenz(a)anthracene:DNA adducts, was modified to allow the analysis of benzo(a)pyrene (BaP):DNA adducts formed in cells in culture. Adducts resulting from reaction of 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BaPDE) contain cis-vicinal hydroxyl groups that complex with the boronic acid residues; adducts resulting from 7 beta, 8 alpha-dihydroxy-9 beta, 10 beta-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (syn-BaPDE) do not. A mixture of [3H]-syn-BaPDE:deoxyguanosine (dGuo) adduct and [14C]-anti-BaPDE:dGuo adduct was completely resolved on a column of boronate:cellulose. Early-passage cultures of Sencar mouse, Syrian hamster, and Wistar rat embryo cells and a culture of a human hepatoma cell line ( Hep G2) were exposed to [3H]BaP, and the BaP:DNA adducts were resolved by boronate chromatography and high-performance liquid chromatography. The Hep G2 cells and mouse embryo cells contained two major adducts, a (+)-anti-BaPDE:dGuo adduct and a syn-BaPDE:dGuo adduct. Boronate chromatography permitted the resolution of an additional minor syn-BaPDE:deoxyribonucleoside adduct in the mouse embryo cells. The hamster and rat embryo cells contained a number of major BaP-DNA adducts that were resolved by boronate chromatography followed by high-performance liquid chromatography. The rat embryo cells contained three syn-BaPDE:deoxyribonucleoside adducts and approximately equal amounts of two adducts tentatively identified as dGuo adducts of the (+) and (-) enantiomers of anti-BaPDE. The boronate chromatography-high-performance liquid chromatography procedure improves the separation of the BaP:DNA adducts formed in biological systems and facilitates the identification of the BaP metabolite(s) responsible for the formation of these adducts.[1]


  1. Analysis of benzo(a)pyrene:DNA adducts formed in cells in culture by immobilized boronate chromatography. Pruess-Schwartz, D., Sebti, S.M., Gilham, P.T., Baird, W.M. Cancer Res. (1984) [Pubmed]
WikiGenes - Universities