The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effects of streptozotocin-induced diabetes on phosphoglyceride metabolism of the rat liver.

We have studied the effect of streptozotocin (SZ)-induced diabetes on fatty acyltransferase and phospholipase enzyme activities involved in the synthesis and degradation of rat liver phosphoglycerides. Neither mitochondrial nor microsomal acyl-CoA:glycerol 3-phosphate acyltransferase (GPAT) activity was altered, although insulin treatment stimulated mitochondrial GPAT activity. However, microsomal acyl-CoA:1-acylglycerol 3-phosphate acyltransferase (1-acyl-GPAT) activity increased (24-33 per cent, p less than 0.01) in the diabetic animals using 3 different acyl-CoA donors: palmitoyl-CoA, oleoyl-CoA and linoleoyl-CoA. SZ-induced diabetes also increased acyl-CoA;1-acylglycerol 3-phosphorylcholine acyltransferase (GPCAT) activity (38-45 per cent, p less than 0.01) with 3 different acyl-CoA donors: oleoyl-CoA, linoleoyl-CoA and arachidonoyl-CoA. 1-acyl-GPAT and GPCAT activity returned to normal with insulin treatment. In contrast to the increased activity of the microsomal fatty acyl-transferases 1-acyl-GPAT and GPCAT, SZ-induced diabetes decreased mitochondrial phospholipase A2 activity and lysophospholipase activity (49-70 per cent, p less than 0.01). Insulin treatment of the diabetic rats corrected the decreased lysophospholipase and stimulated phospholipase A2 activity 35 per cent higher than controls. Since microsomal 1-acyl-GPAT and GPCAT are known to have higher activity toward unsaturated fatty acyl-CoA donors, the increased GPCAT activity coupled with the decreased lysophospholipase activity and the increased 1-acyl-GPAT activity in diabetes would tend to increase the formation of newly synthesized phospholipids containing unsaturated fatty acids. This mechanism plus the decreased fatty acid desaturase (4) may be the factors which alter the fatty acid composition of phosphoglycerides in diabetic rat liver microsomes.[1]

References

 
WikiGenes - Universities