The hypoxia model in human psychopharmacology: neurophysiological and psychometric studies with aniracetam i.v.
Changes in human brain function and mental performance under hypoxic hypoxidosis as well as after intravenous injection of aniracetam - a new potentially nootropic 2-pyrrolidinone derivative - were investigated in a double-blind placebo-controlled study utilizing computer-assisted spectral analysis of the EEG and psychometric tests. Hypoxic hypoxidosis was induced by a fixed gas combination of 11.2% O2 and 88.8% N2, which was inhaled under normobaric conditions by 10 male healthy volunteers. The following substances were injected intravenously at weekly intervals according to a latin square design: placebo, 10 mg and 100 mg aniracetam and the solvent under hypoxic conditions as well as placebo under normoxic conditions. Spectral analysis of the EEG recorded under hypoxia demonstrated neurophysiological alterations indicative of a deterioration in vigilance, which was also reflected by a deterioration in psychomotor activity and mnestic performance in the psychometric tests. Aniracetam i.v. attenuated the hypoxia-induced deterioration of brain function and mental performance, thus exhibiting protective properties against hypoxia in man. The usefulness of the hypoxia model in the screening of antihypoxidotic compounds is discussed.[1]References
- The hypoxia model in human psychopharmacology: neurophysiological and psychometric studies with aniracetam i.v. Saletu, B., Grünberger, J. Human neurobiology. (1984) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg