The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Metabolism of 1-nitro[14C]pyrene in vivo in the rat and mutagenicity of urinary metabolites.

The metabolic fate of the bacterial mutagen, environmental pollutant and potential carcinogen 1-nitropyrene (NP) has been investigated in the rat. Over half of an i.p. dose (10 mg/kg) of 1-nitro[14C]pyrene was excreted within 24 h of dosing, 15% of the dose in urine and 40% in the faeces. After 96 h greater than 80% of the dose had been recovered. The urinary and fecal metabolites of NP were separated and quantitated by h.p.l.c., then identified by high resolution gas chromatography/ mass spectrometry (h.r.g.c./m.s.) and comparison with synthetic reference compounds, where available. Very little (less than 5%) of the dose was excreted unchanged. Urinary metabolites were all excreted in conjugate form, mainly with glucuronic acid. Among the principal metabolite fractions identified were 3-hydroxy-1-nitropyrene and 8-hydroxy-1-nitropyrene (already known as hepatic in vitro metabolites of 1-nitropyrene) and the hitherto unreported metabolites 6-hydroxy-N-acetyl-1-aminopyrene and 8-hydroxy-N-acetyl-1-aminopyrene. Mutagenic activity was detected, by means of the Ames Salmonella (strain TA 98) plate incorporation assay, in the urine of rats dosed with NP. This mutagenicity, unlike that of NP itself, required exogenous metabolic activation. It was predominantly associated with 6-hydroxy-N-acetyl-1-aminopyrene and with the nitropyrene phenols (specific mutagenicity 600 and 700 rev/nmol respectively in the presence of 0.6 mg of S9 protein per plate). The majority of the residual metabolites were polar, refractory to enzymic hydrolysis, and of low mutagenicity. The major proportion of the 14C in feces was not extractable or amenable to enzymic hydrolysis; the extractable fecal metabolites were similar in nature to those in urine.[1]

References

  1. Metabolism of 1-nitro[14C]pyrene in vivo in the rat and mutagenicity of urinary metabolites. Ball, L.M., Kohan, M.J., Inmon, J.P., Claxton, L.D., Lewtas, J. Carcinogenesis (1984) [Pubmed]
 
WikiGenes - Universities