The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Isolation and characterization of mutants that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae.

Degradation of allantoin, allantoate, or urea by Saccharomyces cerevisiae requires the participation of four enzymes and four transport systems. Production of the four enzymes and one of the active transport systems is inducible; allophanate, the last intermediate of the pathway, functions as the inducer. The involvement of allophanate in the expression of five distinct genes suggested that they might be regulated by a common element. This suggestion is now supported by the isolation of a new class of mutants (dal80). Strains possessing lesions in the DAL80 locus produce the five inducible activities at high, constitutive levels. Comparable constitutive levels of activity were also observed in doubly mutant strains (durl dal80) which are unable to synthesize allophanate. This, with the observation that arginase activity remained at its uninduced, basal level in strains mutated at the DAL80 locus, eliminates internal induction as the basis for constitutive enzyme synthesis. Mutations in dal80 are recessive to wild-type alleles. The DAL80 locus has been located and is not linked to any of the structural genes of the allantoin pathway. Synthesis of the five enzymes produced constitutively in dal80-1-containing mutants remains normally sensitive to nitrogen repression even though the dal80-1 mutation is present. From these observations we conclude that production of the allantoin-degrading enzymes is regulated by the DAL80 gene product and that induction and repression of enzyme synthesis can be cleanly separated mutationally.[1]


WikiGenes - Universities