Cell volume and osmotic properties of erythrocytes after complement lysis measured by flow cytometry.
The changes of volume distribution curves of erythrocytes during and after lysis by complement or nystatin or in hypotonic buffers were measured by flow cytometry. Biconcave and spheroidal ghosts were observed after complement lysis and spheroidal ghosts were seen only after nystatin and hypotonic lysis. The spheroidal ghosts derived from red cells lysed by complement or nystatin were permeable to sucrose; those from hypotonic lysis were sucrose-impermeable. Spheroidal ghosts after complement lysis remained permeable for sucrose whereas spheroidal ghosts after nystatin lysis resealed after removal of the drug by washing. Biconcave ghosts produced by complement lysis were almost impermeable to sucrose initially and therefore responded to osmotic changes, but they became sucrose-permeable upon prolonged incubation at 37 degrees C. The rate of sucrose equilibration increased as the stability of the biconcave shape diminished with increasing numbers of C5b-9 complexes. At 850 C5b-9 complexes/ghost, the biconcave shape and impermeability for sucrose were completely lost. The results support the hypothesis that complement C5b-9 complexes, in addition to the interaction with the lipid bilayer, may interact with the cytoskeleton of the erythrocyte membrane.[1]References
- Cell volume and osmotic properties of erythrocytes after complement lysis measured by flow cytometry. Bauer, J., Valet, G. J. Immunol. (1983) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg