The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Equilibrium and kinetic studies on the binding of des-N-tetramethyltriostin A to DNA.

The interaction between TANDEM (a des-methyl analogue of triostin A) and poly(dA-dT) results in extension of the helix by 6.8 A for each ligand molecule bound, exactly as predicted for a bis-intercalation reaction. Cooperativity is evident in Scatchard plots for the interaction at ionic strengths of 0.2 and 1.0, where the binding constant is diminished compared to that which pertains at low salt concentrations. Binding to a natural DNA (calf thymus), already considerably weaker than binding to poly(dA-dT), is also sensitive to increased ionic strength. With a self-complementary octanucleotide d(G-G-T-A-T-A-C-C) the binding curve indicates the presence of a single des-N-tetramethyltriostin A binding site per helical fragment with a non-cooperative association constant about 6 . 10(6) M-1. Detergent-induced dissociation of des-N-tetramethyltriostin A-poly(dA-dT) complexes results in a simple exponential decay at all levels of binding, but the time constant of decay is dependent upon the initial binding ratio. This behavior cannot directly explain the cooperativity of equilibrium binding isotherms but suggests the occurrence of relatively long-lived perturbations of the helical structure by binding of the ligand. [Ala3, Ala7]des-N-tetramethyltriostin A, which has a more flexible octapeptide ring lacking the disulphide cross-bridge, dissociates from poly(dA-dT) much faster than des-N-tetramethyltriostin A. Dissociation of des-N-tetramethyltriostin A from calf thymus DNA is more rapid than dissociation of triostin A or other quinoxaline antibiotics, which may account for its low antimicrobial activity.[1]

References

  1. Equilibrium and kinetic studies on the binding of des-N-tetramethyltriostin A to DNA. Fox, K.R., Olsen, R.K., Waring, M.J. Biochim. Biophys. Acta (1982) [Pubmed]
 
WikiGenes - Universities