Yeast checkpoint genes in DNA damage processing: implications for repair and arrest.
Yeast checkpoint control genes were found to affect processing of DNA damage as well as cell cycle arrest. An assay that measures DNA damage processing in vivo showed that the checkpoint genes RAD17, RAD24, and MEC3 activated an exonuclease that degrades DNA. The degradation is probably a direct consequence of checkpoint protein function, because RAD17 encodes a putative 3'-5' DNA exonuclease. Another checkpoint gene, RAD9, had a different role: It inhibited the degradation by RAD17, RAD24, and MEC3. A model of how processing of DNA damage may be linked to both DNA repair and cell cycle arrest is proposed.[1]References
- Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Lydall, D., Weinert, T. Science (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg