The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Characterization of N-ethylmaleimide-sensitive thiol groups required for the GTP-dependent fusion of endoplasmic reticulum membranes.

The GTP-dependent fusion activity of endoplasmic reticulum membranes is thought to be required for the structural maintenance and post-mitotic regeneration of the endoplasmic reticulum. This fusion is sensitive to the thiol-alkylating agent N-ethylmaleimide. In many intracellular fusion events N-ethylmaleimide-sensitivity is associated with a homotrimeric ATPase called N-ethylmaleimide-sensitive fusion protein or NSF. The addition of cytosol containing NSF is known to restore fusion activity to N-ethylmaleimide-treated membranes. We found that the inhibition of fusion of rat liver endoplasmic reticulum membranes (microsomes) by N-ethylmaleimide was not reversed by the addition of untreated cytosol. Fusion was also unaffected by treatment with a buffer known to remove NSF from membranes. Accordingly, no membrane-associated NSF was detected by immunoblot analysis. These data suggest that microsome fusion requires an N-ethylmaleimide-sensitive component distinct from NSF. This component was tightly associated with the membranes, so we used a number of chemical probes to characterize it in situ. Its thiol groups did not appear to be part of a GTP-binding site. They showed relatively low reactivity with sodium periodate, which induces the formation of disulphide bonds between proximate thiol groups. The thiols were not protected against N-ethylmaleimide by Zn2+, a potent inhibitor of fusion which is known to efficiently co-ordinate thiol groups. To characterize the topology of the fusion-related thiol groups we used bulky thiol-specific reagents prepared by conjugating BSA or 10 kDa aminodextran to the bifunctional reagent N-succinimidyl 3-(2-pyridyldithio)propionate. The inhibition of fusion by these reagents indicated that these thiols are highly exposed on the membranes. This exposure might be important for the function of these groups during GTP-triggered fusion.[1]


WikiGenes - Universities