The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The essential arginine residue at position 210 in the alpha subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity.

The substitution of arginine at position 210 in the alpha subunit of Escherichia coli F0F1-ATPase by either lysine or alanine causes dominance in complementation tests with a chromosomal c subunit mutation. Reversal of dominance was achieved for the alpha R210K mutation but not for the alpha R210A mutation by the presence of an aspartic acid residue at position 50 or at position 252 in the alpha subunit. It was concluded that position 210 in putative helix 4 of a previously proposed model of the alpha subunit is close to position 252 in putative helix 5 and to position 50 in putative helix 1. The juxtaposition of residues 252 and 210 was also indicated by the observation that the double mutant alpha R210Q/Q252R was partially functional. A revertant of the partially functional double mutant, isolated on succinate medium, was found to contain a third mutation resulting in Pro-204 in the alpha subunit being replaced by threonine. That the revertant phenotype was due to the alpha P204T change was confirmed by site-directed mutagenesis. ATP synthesis in the revertant strain was at near normal levels as judged by growth yield experiments, but the revertant strain was unable to pump protons in response to ATP hydrolysis.[1]


WikiGenes - Universities