The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Genetic Complementation Test

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Genetic Complementation Test

 

High impact information on Genetic Complementation Test

  • Complementation tests to mutations show that Ddc is a positional candidate gene for life span in these strains [6].
  • Quantitative complementation tests of mutations at these coregulated genes with the smi mutations showed that in most cases (67%) epistatic interactions for olfactory behavior mirrored epistasis at the level of transcription, thus identifying new candidate genes regulating olfactory behavior [7].
  • Cis-trans test shows a functional relationship between non-allelic lethal mutations in the T/t-complex [8].
  • Complementation tests showed that suppression was due to two chromosomal loci, ssp1 and ssp2 [9].
  • Moreover, the end1 mutant and all of the previously reported pep mutants, with the exception of pep4, were found to exhibit a profound vacuolar protein sorting defect, and complementation tests between the PEP, VPL VPT and END1 groups demonstrated that there are extensive overlaps between these groups [10].
 

Chemical compound and disease context of Genetic Complementation Test

 

Biological context of Genetic Complementation Test

 

Anatomical context of Genetic Complementation Test

  • By contrast, the closely related species D. albolineatus exhibits a uniform pattern of melanophores, and previous interspecific complementation tests identified fms as a potential contributor to this difference between species [19].
  • Even a lower amount of the env gene product almost escaping detection by the complementation test has been found in the helper-dependent virogenic H-18 cell line [20].
 

Associations of Genetic Complementation Test with chemical compounds

 

Gene context of Genetic Complementation Test

 

Analytical, diagnostic and therapeutic context of Genetic Complementation Test

References

  1. The essential arginine residue at position 210 in the alpha subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. Hatch, L.P., Cox, G.B., Howitt, S.M. J. Biol. Chem. (1995) [Pubmed]
  2. Mapping of an adenovirus function involved in the inhibition of DNA degradation. Lai Fatt, R.B., Mak, S. J. Virol. (1982) [Pubmed]
  3. Gas chromatographic assay for in vitro complementation of Pseudomonas aeruginosa mutants deficient in nitrate reduction. Hernandez, D., Rowe, J.J. Appl. Environ. Microbiol. (1985) [Pubmed]
  4. A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. Hirasawa, T., Wachi, M., Nagai, K. J. Bacteriol. (2000) [Pubmed]
  5. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. Makino, S., Uchida, I., Terakado, N., Sasakawa, C., Yoshikawa, M. J. Bacteriol. (1989) [Pubmed]
  6. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. De Luca, M., Roshina, N.V., Geiger-Thornsberry, G.L., Lyman, R.F., Pasyukova, E.G., Mackay, T.F. Nat. Genet. (2003) [Pubmed]
  7. The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Anholt, R.R., Dilda, C.L., Chang, S., Fanara, J.J., Kulkarni, N.H., Ganguly, I., Rollmann, S.M., Kamdar, K.P., Mackay, T.F. Nat. Genet. (2003) [Pubmed]
  8. Cis-trans test shows a functional relationship between non-allelic lethal mutations in the T/t-complex. Shin, H.S., McCormick, P., Artzt, K., Bennett, D. Cell (1983) [Pubmed]
  9. A novel protein kinase gene ssp1+ is required for alteration of growth polarity and actin localization in fission yeast. Matsusaka, T., Hirata, D., Yanagida, M., Toda, T. EMBO J. (1995) [Pubmed]
  10. Characterization of genes required for protein sorting and vacuolar function in the yeast Saccharomyces cerevisiae. Rothman, J.H., Howald, I., Stevens, T.H. EMBO J. (1989) [Pubmed]
  11. Functional analysis of Sinorhizobium meliloti genes involved in biotin synthesis and transport. Entcheva, P., Phillips, D.A., Streit, W.R. Appl. Environ. Microbiol. (2002) [Pubmed]
  12. Sequence analysis of the Brevibacterium lactofermentum trp operon. Matsui, K., Sano, K., Ohtsubo, E. Mol. Gen. Genet. (1987) [Pubmed]
  13. Characterization of two glyceraldehyde 3-phosphate dehydrogenase genes in Giardia lamblia. Yang, H.W., Yong, T.S., Lee, J.H., Im, K.I., Park, S.J. Parasitol. Res. (2002) [Pubmed]
  14. Physical and genetic characterization of the melibiose operon and identification of the gene products in Escherichia coli. Hanatani, M., Yazyu, H., Shiota-Niiya, S., Moriyama, Y., Kanazawa, H., Futai, M., Tsuchiya, T. J. Biol. Chem. (1984) [Pubmed]
  15. Transcriptional organization of the dnaN and recF genes of Escherichia coli K-12. Armengod, M.E., García-Sogo, M., Lambíes, E. J. Biol. Chem. (1988) [Pubmed]
  16. nip, a symbiotic Medicago truncatula mutant that forms root nodules with aberrant infection threads and plant defense-like response. Veereshlingam, H., Haynes, J.G., Penmetsa, R.V., Cook, D.R., Sherrier, D.J., Dickstein, R. Plant Physiol. (2004) [Pubmed]
  17. Genetic studies of cell fusion induced by herpes simplex virus type 1. Read, G.S., Person, S., Keller, P.M. J. Virol. (1980) [Pubmed]
  18. Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Dewdney, J., Reuber, T.L., Wildermuth, M.C., Devoto, A., Cui, J., Stutius, L.M., Drummond, E.P., Ausubel, F.M. Plant J. (2000) [Pubmed]
  19. Evolutionary diversification of pigment pattern in Danio fishes: differential fms dependence and stripe loss in D. albolineatus. Quigley, I.K., Manuel, J.L., Roberts, R.A., Nuckels, R.J., Herrington, E.R., MacDonald, E.L., Parichy, D.M. Development (2005) [Pubmed]
  20. Characterization of cryptovirogenic, virus-productive and helper-dependent virogenic hamster tumour cell lines. Geryk, J., Sainerová, H., Sovová, V., Svoboda, J. Folia Biol. (Praha) (1984) [Pubmed]
  21. Identification of active site residues in the "GyrA" half of yeast DNA topoisomerase II. Liu, Q., Wang, J.C. J. Biol. Chem. (1998) [Pubmed]
  22. In vivo analysis of various substrates utilized by cystathionine gamma-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. Hacham, Y., Gophna, U., Amir, R. Mol. Biol. Evol. (2003) [Pubmed]
  23. Caenorhabditis elegans deficiency mapping. Sigurdson, D.C., Spanier, G.J., Herman, R.K. Genetics (1984) [Pubmed]
  24. Complementation analysis of resistance to 5-fluorocytosine in Candida albicans. Whelan, W.L., Markie, D., Kwon-Chung, K.J. Antimicrob. Agents Chemother. (1986) [Pubmed]
  25. Complementation between uncF alleles affecting assembly of the F1F0-ATPase complex of Escherichia coli. Jans, D.A., Hatch, L., Fimmel, A.L., Gibson, F., Cox, G.B. J. Bacteriol. (1985) [Pubmed]
  26. The Rice COLEOPTILE PHOTOTROPISM1 gene encoding an ortholog of Arabidopsis NPH3 is required for phototropism of coleoptiles and lateral translocation of auxin. Haga, K., Takano, M., Neumann, R., Iino, M. Plant Cell (2005) [Pubmed]
  27. Arabidopsis cop8 and fus4 mutations define the same gene that encodes subunit 4 of the COP9 signalosome. Serino, G., Tsuge, T., Kwok, S., Matsui, M., Wei, N., Deng, X.W. Plant Cell (1999) [Pubmed]
  28. Identification of the genetic locus for the structural gene and a new regulatory gene for the synthesis of repressible alkaline phosphatase in Saccharomyces cerevisiae. Kaneko, Y., Toh-e, A., Oshima, Y. Mol. Cell. Biol. (1982) [Pubmed]
  29. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Tsubouchi, H., Ogawa, H. Mol. Cell. Biol. (1998) [Pubmed]
  30. Skeletal defects in ringelschwanz mutant mice reveal that Lrp6 is required for proper somitogenesis and osteogenesis. Kokubu, C., Heinzmann, U., Kokubu, T., Sakai, N., Kubota, T., Kawai, M., Wahl, M.B., Galceran, J., Grosschedl, R., Ozono, K., Imai, K. Development (2004) [Pubmed]
  31. A reeler mutant mouse with a new, spontaneous mutation in the reelin gene. Andersen, T.E., Finsen, B., Goffinet, A.M., Issinger, O.G., Boldyreff, B. Brain Res. Mol. Brain Res. (2002) [Pubmed]
  32. Isolation of a yeast mutant deficient in pyruvate carboxylase activity. Walker, M.E., Wallace, J.C. Biochem. Int. (1991) [Pubmed]
 
WikiGenes - Universities