The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

A large-conductance mechanosensitive channel in E. coli encoded by mscL alone.

All cellular organisms respond to vibration, touch, gravity or changes in osmolarity, although the molecules on which such mechanosensations depend are unknown. Candidates include certain channels that gate in response to membrane stretch. Patch-clamp experiments with Escherichia coli envelope have revealed a mechanosensitive channel with very large conductance (MscL) and one with a smaller conductance (MscS) which may be important in osmoregulation. Here we have solubilized and fractionated the envelope, reconstituted the MscL activity in vitro, and traced it to a small protein, whose gene, mscL, we then cloned. Insertional disruption of mscL removes the channel activity, whereas re-expression of mscL borne on an expression plasmid restores it. MscL-channel activities were observed in material from a cell-free expression system with mscL as the only template. The mscL nucleotide sequence predicts a unique protein of only 136 amino acids, with a highly hydrophobic core and very different from porins or other known proteins.[1]

References

  1. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Sukharev, S.I., Blount, P., Martinac, B., Blattner, F.R., Kung, C. Nature (1994) [Pubmed]
 
WikiGenes - Universities