The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Structure-function relationships for a new series of pyridine-2-carboxaldehyde thiosemicarbazones on ribonucleotide reductase activity and tumor cell growth in culture and in vivo.

The synthesis of a new series of pyridine-2-carboxaldehyde thiosemicarbazones (HCTs) that have amino groups in the 3- and 5-positions has allowed the comparison of the structure/function relationships with regard to inhibition of ribonucleotide reductase activity, L1210 cell growth in culture and L1210 leukemia in vivo. 3-Aminopyridine-2-carboxaldehyde thiosemicarbazones are more active than the corresponding 3-hydroxy-derivatives. The 3-amino-2-pyridine carboxaldehyde thiosemicarbazones were also more active then the 5-amino-2-carboxaldehyde thiosemicarbazones in inhibiting ribonucleotide reductase activity and L1210 cell growth in culture and in vivo. N-Acetylation of the 3-amino derivative resulted in a compound that was much less active both in vitro and in vivo; N-acetylation of the 5-amino derivative did not alter the in vitro inhibitory properties, but did eliminate the antitumor properties in vivo. When the most active HCTs were studied in more detail, it was found that the incorporation of [3H]thymidine into DNA was inhibited completely without the inhibition of [3H]uridine incorporation into RNA. Further, the conversion of [14C]cytidine to deoxycytidine nucleotides and incorporation into DNA was inhibited by the HCTs without an effect on the incorporation of cytidine into RNA. These data support the conclusion that ribonucleotide reductase is the major site of action of these HCTs. The 3-aminopyridine-2-carboxaldehyde thiosemicarbazones emerge as strong candidates for development for clinical trials in cancer patients.[1]

References

 
WikiGenes - Universities