The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Association of an unusual form of a Pax7-like gene with increased efficiency of skeletal muscle regeneration.

Efficiency of regeneration of mechanically injured skeletal muscle is more pronounced in SJL/J mice, as compared to other laboratory strains in which regenerative properties of skeletal muscle are uniformly poor. Previously, we postulated that a small number of genes might differ between SJL/J and other mouse strains, and would be responsible for this variation in the efficiency of skeletal muscle regeneration. The results of initial experiments demonstrated that SJL/J mice have a unique form of the myogenic gene, Myo-D1, which partly influences efficiency of skeletal muscle repair, and that other genes were also involved. To identify other candidate genes, differences were sought within the myogenic paired box/homeobox-containing gene Pax7 between SJL/J and other laboratory mouse strains. Southern blotting indicated that SJL/J, Quackenbush and DDO mice share a Pax7/TaqI RFLP which differs from all other laboratory strains tested. This RFLP is most likely due to sequence differences within the homeobox of a Pax7-like gene. In vivo studies revealed that Quackenbush and DDO mice also share the same regenerative properties of mechanically damaged skeletal muscle as SJL/J mice. Since Quackenbush and DDO mice lack the SJL/J type of Myo-D1, and DDO belong to a different mouse sub-species, these studies suggest that structural alterations in the homeobox of a Pax7-like gene may be implicated in the effectiveness of renewal of damaged skeletal muscle of the limb in the mature animal.[1]

References

  1. Association of an unusual form of a Pax7-like gene with increased efficiency of skeletal muscle regeneration. Kay, P.H., Mitchell, C.A., Akkari, A., Papadimitriou, J.M. Gene (1995) [Pubmed]
 
WikiGenes - Universities