The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Analysis of spontaneous frameshift mutations in REV1 and rev1-1 strains of Saccharomyces cerevisiae.

Frameshift mutations occur by a number of mechanisms. To better understand the nature of these mechanisms, we determined the DNA sequence changes of 232 independent, spontaneous frameshift mutations in the HIS4 gene of REV1 and rev1-1 strains of Saccharomyces cerevisiae. All frameshift mutants were selected based on their ability to revert the +1 frameshift mutation his4-38. DNA sequence information was recovered using two approaches-the double-strand gap repair of plasmid pMP4, and the polymerase chain reaction (PCR). Using these techniques, saturated mutation spectra for the spontaneous reversion of his4-38 were generated. The most frequently occurring mutational events in both strains were -1 frameshifts, but +2 frameshifts, larger deletions, larger insertions and more complex mutations were also observed. Between the REV1 and rev1-1 strains, we noticed a significant difference in the distribution of -1 frameshift mutations. In addition, while for -1 frameshift events there was no significant difference between the reversion spectra determined by double-strand gap repair or PCR, there was a surprisingly significant difference between the types of frameshift mutations recovered by double-strand gap repair (only -1 frameshifts and one +2 frameshift), and those recovered using PCR (-1 frameshifts, +2 frameshifts, larger deletions and insertions, and more complex mutations). This difference may reflect a selectional mechanism inherent in double-strand break repair that avoids chromosomal sequences which include complex alterations.[1]

References

 
WikiGenes - Universities