The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Frameshift Mutation

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Frameshift Mutation


High impact information on Frameshift Mutation

  • The presence of the HDAC2 frameshift mutation causes a loss of HDAC2 protein expression and enzymatic activity and renders these cells more resistant to the usual antiproliferative and proapoptotic effects of histone deacetylase inhibitors [6].
  • Here we report that although all nonsense and frameshift mutations that cause premature termination of translation generate truncated SOX10 proteins with potent dominant-negative activity, the more severe disease phenotype, PCWH, is realized only when the mutant mRNAs escape the nonsense-mediated decay (NMD) pathway [7].
  • These missense and frameshift mutations mapped to evolutionarily conserved domains adjacent to the catalytic ATPase pocket within SUR2A [8].
  • Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin [9].
  • We mapped the 2p13 breakpoint on the maternal allele to a genomic fragment of 1.7 kb which contains exon 4 and the start of exon 5 of a newly discovered gene (ALMS1); we detected a frameshift mutation in the paternal copy of the gene [10].

Chemical compound and disease context of Frameshift Mutation


Biological context of Frameshift Mutation


Anatomical context of Frameshift Mutation

  • This cell line carries a near-homoplasmic frameshift mutation in the mtDNA gene for the ND6 subunit resulting in an almost complete absence of this polypeptide, while lacking any mutation in the other mtDNA-encoded subunits of the enzyme complex [21].
  • The molecular mechanism behind the MSI phenotype provides a clue to understanding the lymphocyte reaction by allowing reliable prediction of potential T cell epitopes created by frameshift mutations in candidate genes carrying nucleotide repeat sequences, such as TGF beta RII and BAX [22].
  • Analysis of the cII mutational spectrum within the mammary tumor genomic DNA demonstrated a >6-fold elevation in transversion mutation frequency, resulting in a highly unusual inversion of the transition/transversion ratio characteristic of normal epithelium; frameshift mutation frequencies were unaltered [23].
  • Furthermore, the entire MSH6 gene was sequenced exon by exon in families with frameshift mutations in the (C)8 tract in tumors, previously suggested as a predictor of MSH6 germ-line mutations; no mutations were found [24].
  • Somatic alterations of the TGF-beta type II receptor gene (TGFBR2) were identified in 4 of 97 (4.1%) pancreas cancers, including a homozygous deletion in a replication error-negative cancer and three homozygous frameshift mutations of the poly(A) tract of the TGF-beta type II receptor in replication error-positive cancers [25].

Associations of Frameshift Mutation with chemical compounds

  • Their serum leptin levels were very low despite their markedly elevated fat mass and, in both, a homozygous frame-shift mutation involving the deletion of a single guanine nucleotide in codon 133 of the gene for leptin was found [26].
  • All externally, suppressible frameshift mutations occur in glycine and proline codons to produce the four-base codons GGGU (U, uracil), GGGG, and CCCU [27].
  • Expression of serogroup B meningococcal capsular polysaccharide undergoes frequent phase variation involving reversible frameshift mutations within a homopolymeric repeat in the siaD gene [28].
  • The nucleotide 1226 mutation (asparagine 370----serine) and 84GG (an insertional frameshift mutation) were found exclusively in five patients of Ashkenazi Jewish descent (7 and 2 of the 10 disease alleles, respectively) [29].
  • Frameshift mutations upstream of this methionine codon (bp 3879) affect neither transforming activity nor the ability to synthesize full-size E5 protein [30].

Gene context of Frameshift Mutation

  • These data implicate mutations in GLI3 as the cause of autosomal dominant PHS, and suggest that frameshift mutations of the GLI3 transcription factor gene can alter the development of multiple organ systems in vertebrates [31].
  • Furthermore, the gene harbours frameshift mutations in affected members of two EXT1 families [32].
  • Determining the complete exon-intron structure of JAG1 allowed detailed mutational analysis of DNA samples from non-deletion AGS patients, revealing three frame-shift mutations, two splice donor mutations and one mutation abolishing RNA expression from the altered allele [33].
  • We identified 2 frameshift mutations in exon 2. a 1-bp insertion and a 2-bp deletion, among four Iranian families with TRMA [34].
  • The homologous human gene, LYST, is highly conserved with mouse Lyst, and contains a frame-shift mutation at nucleotides 117-118 of the coding domain in a CHS patient [35].

Analytical, diagnostic and therapeutic context of Frameshift Mutation


  1. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Yeo, G.S., Farooqi, I.S., Aminian, S., Halsall, D.J., Stanhope, R.G., O'Rahilly, S. Nat. Genet. (1998) [Pubmed]
  2. A frame shift mutation in the PMP22 gene in hereditary neuropathy with liability to pressure palsies. Nicholson, G.A., Valentijn, L.J., Cherryson, A.K., Kennerson, M.L., Bragg, T.L., DeKroon, R.M., Ross, D.A., Pollard, J.D., McLeod, J.G., Bolhuis, P.A. Nat. Genet. (1994) [Pubmed]
  3. Endothelin-3 frameshift mutation in congenital central hypoventilation syndrome. Bolk, S., Angrist, M., Xie, J., Yanagisawa, M., Silvestri, J.M., Weese-Mayer, D.E., Chakravarti, A. Nat. Genet. (1996) [Pubmed]
  4. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Willis, T.G., Jadayel, D.M., Du, M.Q., Peng, H., Perry, A.R., Abdul-Rauf, M., Price, H., Karran, L., Majekodunmi, O., Wlodarska, I., Pan, L., Crook, T., Hamoudi, R., Isaacson, P.G., Dyer, M.J. Cell (1999) [Pubmed]
  5. Recurrent BRCA2 6174delT mutations in Ashkenazi Jewish women affected by breast cancer. Neuhausen, S., Gilewski, T., Norton, L., Tran, T., McGuire, P., Swensen, J., Hampel, H., Borgen, P., Brown, K., Skolnick, M., Shattuck-Eidens, D., Jhanwar, S., Goldgar, D., Offit, K. Nat. Genet. (1996) [Pubmed]
  6. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Ropero, S., Fraga, M.F., Ballestar, E., Hamelin, R., Yamamoto, H., Boix-Chornet, M., Caballero, R., Alaminos, M., Setien, F., Paz, M.F., Herranz, M., Palacios, J., Arango, D., Orntoft, T.F., Aaltonen, L.A., Schwartz, S., Esteller, M. Nat. Genet. (2006) [Pubmed]
  7. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Inoue, K., Khajavi, M., Ohyama, T., Hirabayashi, S., Wilson, J., Reggin, J.D., Mancias, P., Butler, I.J., Wilkinson, M.F., Wegner, M., Lupski, J.R. Nat. Genet. (2004) [Pubmed]
  8. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Bienengraeber, M., Olson, T.M., Selivanov, V.A., Kathmann, E.C., O'Cochlain, F., Gao, F., Karger, A.B., Ballew, J.D., Hodgson, D.M., Zingman, L.V., Pang, Y.P., Alekseev, A.E., Terzic, A. Nat. Genet. (2004) [Pubmed]
  9. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. McGregor, L., Makela, V., Darling, S.M., Vrontou, S., Chalepakis, G., Roberts, C., Smart, N., Rutland, P., Prescott, N., Hopkins, J., Bentley, E., Shaw, A., Roberts, E., Mueller, R., Jadeja, S., Philip, N., Nelson, J., Francannet, C., Perez-Aytes, A., Megarbane, A., Kerr, B., Wainwright, B., Woolf, A.S., Winter, R.M., Scambler, P.J. Nat. Genet. (2003) [Pubmed]
  10. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Hearn, T., Renforth, G.L., Spalluto, C., Hanley, N.A., Piper, K., Brickwood, S., White, C., Connolly, V., Taylor, J.F., Russell-Eggitt, I., Bonneau, D., Walker, M., Wilson, D.I. Nat. Genet. (2002) [Pubmed]
  11. The product of a newly identified gene, gInF, is required for synthesis of glutamine synthetase in Salmonella. Garcia, E., Bancroft, S., Rhee, S.G., Kustu, S. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  12. Distinct pathogenetic mechanisms for PHOX2B associated polyalanine expansions and frameshift mutations in congenital central hypoventilation syndrome. Bachetti, T., Matera, I., Borghini, S., Di Duca, M., Ravazzolo, R., Ceccherini, I. Hum. Mol. Genet. (2005) [Pubmed]
  13. A frame shift mutation in the fibrinogen A alpha chain gene in a kindred with renal amyloidosis. Uemichi, T., Liepnieks, J.J., Yamada, T., Gertz, M.A., Bang, N., Benson, M.D. Blood (1996) [Pubmed]
  14. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Prendergast, G.C., Cole, M.D. Mol. Cell. Biol. (1989) [Pubmed]
  15. Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Bader, S., Walker, M., Hendrich, B., Bird, A., Bird, C., Hooper, M., Wyllie, A. Oncogene (1999) [Pubmed]
  16. Mutations of the Down-regulated in adenoma (DRA) gene cause congenital chloride diarrhoea. Höglund, P., Haila, S., Socha, J., Tomaszewski, L., Saarialho-Kere, U., Karjalainen-Lindsberg, M.L., Airola, K., Holmberg, C., de la Chapelle, A., Kere, J. Nat. Genet. (1996) [Pubmed]
  17. Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Verpy, E., Masmoudi, S., Zwaenepoel, I., Leibovici, M., Hutchin, T.P., Del Castillo, I., Nouaille, S., Blanchard, S., Lainé, S., Popot, J.L., Moreno, F., Mueller, R.F., Petit, C. Nat. Genet. (2001) [Pubmed]
  18. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J.C., Perucho, M. Science (1997) [Pubmed]
  19. A novel gene of HIV-1, vpu, and its 16-kilodalton product. Strebel, K., Klimkait, T., Martin, M.A. Science (1988) [Pubmed]
  20. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Steele-Perkins, G., Fang, W., Yang, X.H., Van Gele, M., Carling, T., Gu, J., Buyse, I.M., Fletcher, J.A., Liu, J., Bronson, R., Chadwick, R.B., de la Chapelle, A., Zhang, X., Speleman, F., Huang, S. Genes Dev. (2001) [Pubmed]
  21. The mtDNA-encoded ND6 subunit of mitochondrial NADH dehydrogenase is essential for the assembly of the membrane arm and the respiratory function of the enzyme. Bai, Y., Attardi, G. EMBO J. (1998) [Pubmed]
  22. Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer. Saeterdal, I., Bjørheim, J., Lislerud, K., Gjertsen, M.K., Bukholm, I.K., Olsen, O.C., Nesland, J.M., Eriksen, J.A., Møller, M., Lindblom, A., Gaudernack, G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  23. Genetic instability favoring transversions associated with ErbB2-induced mammary tumorigenesis. Liu, S., Liu, W., Jakubczak, J.L., Erexson, G.L., Tindall, K.R., Chan, R., Muller, W.J., Adhya, S., Garges, S., Merlino, G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  24. MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Huang, J., Kuismanen, S.A., Liu, T., Chadwick, R.B., Johnson, C.K., Stevens, M.W., Richards, S.K., Meek, J.E., Gao, X., Wright, F.A., Mecklin, J.P., Järvinen, H.J., Grönberg, H., Bisgaard, M.L., Lindblom, A., Peltomäki, P. Cancer Res. (2001) [Pubmed]
  25. Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. Goggins, M., Shekher, M., Turnacioglu, K., Yeo, C.J., Hruban, R.H., Kern, S.E. Cancer Res. (1998) [Pubmed]
  26. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Montague, C.T., Farooqi, I.S., Whitehead, J.P., Soos, M.A., Rau, H., Wareham, N.J., Sewter, C.P., Digby, J.E., Mohammed, S.N., Hurst, J.A., Cheetham, C.H., Earley, A.R., Barnett, A.H., Prins, J.B., O'Rahilly, S. Nature (1997) [Pubmed]
  27. Suppressible four-base glycine and proline codons in yeast. Donahue, T.F., Farabaugh, P.J., Fink, G.R. Science (1981) [Pubmed]
  28. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Bucci, C., Lavitola, A., Salvatore, P., Del Giudice, L., Massardo, D.R., Bruni, C.B., Alifano, P. Mol. Cell (1999) [Pubmed]
  29. Genetic diagnosis of Gaucher's disease. Mistry, P.K., Smith, S.J., Ali, M., Hatton, C.S., McIntyre, N., Cox, T.M. Lancet (1992) [Pubmed]
  30. Genetic and biochemical definition of the bovine papillomavirus E5 transforming protein. Burkhardt, A., DiMaio, D., Schlegel, R. EMBO J. (1987) [Pubmed]
  31. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Kang, S., Graham, J.M., Olney, A.H., Biesecker, L.G. Nat. Genet. (1997) [Pubmed]
  32. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Ahn, J., Lüdecke, H.J., Lindow, S., Horton, W.A., Lee, B., Wagner, M.J., Horsthemke, B., Wells, D.E. Nat. Genet. (1995) [Pubmed]
  33. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Oda, T., Elkahloun, A.G., Pike, B.L., Okajima, K., Krantz, I.D., Genin, A., Piccoli, D.A., Meltzer, P.S., Spinner, N.B., Collins, F.S., Chandrasekharappa, S.C. Nat. Genet. (1997) [Pubmed]
  34. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Diaz, G.A., Banikazemi, M., Oishi, K., Desnick, R.J., Gelb, B.D. Nat. Genet. (1999) [Pubmed]
  35. Identification of the homologous beige and Chediak-Higashi syndrome genes. Barbosa, M.D., Nguyen, Q.A., Tchernev, V.T., Ashley, J.A., Detter, J.C., Blaydes, S.M., Brandt, S.J., Chotai, D., Hodgman, C., Solari, R.C., Lovett, M., Kingsmore, S.F. Nature (1996) [Pubmed]
  36. Candidate tumor suppressor RIZ is frequently involved in colorectal carcinogenesis. Chadwick, R.B., Jiang, G.L., Bennington, G.A., Yuan, B., Johnson, C.K., Stevens, M.W., Niemann, T.H., Peltomaki, P., Huang, S., de la Chapelle, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  37. A clinical variant of neurofibromatosis type 1: familial spinal neurofibromatosis with a frameshift mutation in the NF1 gene. Ars, E., Kruyer, H., Gaona, A., Casquero, P., Rosell, J., Volpini, V., Serra, E., Lázaro, C., Estivill, X. Am. J. Hum. Genet. (1998) [Pubmed]
  38. An elastin gene mutation producing abnormal tropoelastin and abnormal elastic fibres in a patient with autosomal dominant cutis laxa. Tassabehji, M., Metcalfe, K., Hurst, J., Ashcroft, G.S., Kielty, C., Wilmot, C., Donnai, D., Read, A.P., Jones, C.J. Hum. Mol. Genet. (1998) [Pubmed]
  39. A cosmid-based system for constructing mutants of herpes simplex virus type 1. Cunningham, C., Davison, A.J. Virology (1993) [Pubmed]
  40. Carnitine uptake defect: frameshift mutations in the human plasmalemmal carnitine transporter gene. Lamhonwah, A.M., Tein, I. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
WikiGenes - Universities