Vma22p is a novel endoplasmic reticulum-associated protein required for assembly of the yeast vacuolar H(+)-ATPase complex.
The Saccharomyces cerevisiae vacuolar H(+)-ATPase (V-ATPase) is a multi-subunit complex that can be structurally and functionally divided into peripheral (V1) and integral membrane (V0) sectors. The vma22-1 mutation was isolated in a screen for mutants defective in V-ATPase function vma22 delta cells contain no V-ATPase activity due to a failure to assemble the enzyme complex; V1 subunits accumulate in the cytosol, and the V0 100-kDa subunit is rapidly degraded. Turnover of the 100-kDa integral membrane protein was found to occur in the endoplasmic reticulum (ER) of vma22 delta cells. The product of the VMA22 gene, Vma22p, is a 21-kDa hydrophilic protein that is not a subunit of the V-ATPase but rather is associated with ER membranes. The association of Vma22p with ER membranes was perturbed by mutations in VMA12, a gene that encodes an ER membrane protein (Vma12p) that is also required for V-ATPase assembly. These results indicate that Vma22p, along with Vma21p and Vma12p, form a set of ER proteins required for V-ATPase assembly.[1]References
- Vma22p is a novel endoplasmic reticulum-associated protein required for assembly of the yeast vacuolar H(+)-ATPase complex. Hill, K.J., Stevens, T.H. J. Biol. Chem. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg